

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the Defense

Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

PARALLEL SPLASH BELIEF PROPAGATION

Carnegie Mellon University

August 2010

Sponsored By
Defense Advanced Research Projects Agency
Darpa Order No. AO/AV59

FINAL TECHNICAL REPORT

AFRL-RI-RS-TR-2010-151

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2010-151 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
ROGER J. DZIEGIEL, Jr. MICHAEL J. WESSING, Deputy Chief
Work Unit Manager For
 JOSEPH CAMERA, Chief
 Information & Intelligence Exploitation Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

AUGUST 2010
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

March 2009 – March 2010
4. TITLE AND SUBTITLE

PARALLEL SPLASH BELIEF PROPAGATION

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
 FA8750-09-1-0141

5c. PROGRAM ELEMENT NUMBER
62304E

6. AUTHOR(S)

Joseph Gonzalez, Yucheng Low, and Carlos Guestrin

5d. PROJECT NUMBER
AV59

5e. TASK NUMBER
00

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University
Office of Sponsored Projects
5000 Forbes Avenue
Pittsburg, PA 15213-3815

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/RIEH
3701 North Fairfax Drive 525 Brooks Road
Arlington, VA 22203-1714 Rome, NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2010-151

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved For Public Release; Distribution Unlimited. PA# 88ABW-2010-4120
Date Cleared: 2-August-2010

13. SUPPLEMENTARY NOTES

14. ABSTRACT
As computer architectures transition towards exponentially increasing parallelism we are forced to adopt parallelism at a
fundamental level in the design of machine learning algorithms. In this paper we focus on parallel graphical model inference. We
demonstrate that the natural, synchronous parallelization of belief propagation is highly inefficient. By bounding the achievable
parallel performance in chain graphical models we develop a theoretical understanding of the parallel limitations of belief
propagation. We then provide a new parallel belief propagation algorithm which achieves optimal performance. Using several
challenging real-world tasks, we empirically evaluate the performance of our algorithm on large cyclic graphical models where we
achieve near linear parallel scaling and outperform alternative algorithms.

15. SUBJECT TERMS
Parallel Algorithms, Graphical Models, Inference, Belief Propagation, machine learning, multi-core architectures

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

65

19a. NAME OF RESPONSIBLE PERSON
Roger J. Dziegiel, Jr.

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Contents

1 Introduction 1

2 Computational Models 2
2.1 Shared Memory . 2
2.2 Distributed Memory and Cluster Computing . 3

3 Graphical Models 4
3.1 Factor Graphs . 4
3.2 Belief Propagation . 5
3.3 Opportunities for Parallelism in Belief Propagation 7

4 Parallel Synchronous Belief Propagation 7
4.1 Bulk Synchronous Parallel Belief Propagation . 7

4.1.1 Map-Reduce Belief Propagation . 8
4.2 Runtime Analysis . 9

4.2.1 Analysis of Bulk Synchronous Belief Propagation on Chains 10

5 τε-Approximate Inference 11
5.1 Empirical Analysis of τε . 12
5.2 Bounding τε Under the Contraction Mapping Assumption 13
5.3 Constructing a τε-Approximation with Parallel Belief Propagation 14

6 Optimal Parallel Scheduling on Chains 16

7 The Splash Belief Propagation Algorithm 17
7.1 The Splash Operation . 17
7.2 Belief Residual Scheduling . 20

7.2.1 Belief Residual Scheduling . 21
7.3 Sequential Splash Algorithm . 22
7.4 The Parallel Splash Algorithm . 23
7.5 Chain Optimality of Parallel Splash . 24
7.6 Dynamic Splashes with Belief Residuals . 26

8 Splash Belief Propagation in Shared Memory 26

9 Distributed Splash Belief Propagation 30
9.1 Partitioning the Factor Graph and Messages . 30

9.1.1 Update Counts Ui . 31
9.1.2 Uninformed Partitioning . 32
9.1.3 Over-Partitioning . 33
9.1.4 Incremental Repartitioning . 33

9.2 Distributing the Priority Queue . 36
9.3 Distributed Termination . 36
9.4 Flap Prevention . 36
9.5 The Distributed Splash Algorithm . 38

i

9.6 Preserving Splash Chain Optimality . 39

10 EXPERIMENTS 39
10.1 Experimental Setup . 39

10.1.1 Implementation . 41
10.2 Sequential Setting . 42
10.3 Shared Memory Parallel Setting . 43
10.4 Distributed Parallel Setting . 46

11 Conclusion 47

12 Future Work 49

A Belief Residuals 49
A.1 Message Residuals May Underestimate Changes in Beliefs 49
A.2 Message Residuals May Overestimate Changes in Beliefs 49
A.3 Failure Case of Naive Belief Residuals . 51

B Natural Parallelizations of Common Belief Propagation Algorithms 51
B.1 Parallel Round-Robin Belief Propagation . 51
B.2 Parallel Wildfire Belief Propagation . 52
B.3 Parallel Residual Belief Propagation . 53

ii

List of Figures

1 The two common parallel architectures encountered in typical commodity hardware. (a) The stan-

dard shared memory architectural model consists of a collection of processors that have low latency

high bandwidth access to a single uniform address space. All inter-processor communication is ac-

complished through the shared memory. (b) The standard distributed memory architectural model

consists of a collection of processors each with their own local memory which are able to communi-

cate by passing messages across a reliable but typically slow communication network. 3

2 The factor graph corresponding to the factorized distribution P (x1, x2, x3, x4) ∝ψ{1,2,3}(x1, x2, x3)

ψ{2,3,4}(x2, x3, x4). The circles represent variables and the squares represent factors. 5

3 (a) The optimal forward-backwards message ordering for exact inference on a chain using a single

processor. (b) The optimal message ordering for exact inference on a chain using two processors.

Note that it is not possible to construct a parallel message scheduling which uses more than two

processors without introducing additional unnecessary work. 10

4 Above the chain graphical model we plot the sequence of messages from vertex 1 to vertex 7. For

visual clarity these messages are plotted as continuous distributions. Below the chain we plot the

approximate sequence of messages starting at vertex 4 assuming a uniform message is received from

vertex 3. We see that the message that finally arrives at vertex 7 is only ε away from the original

message. Therefore for an ε level approximation at vertex 7 messages must only be sent a distance of

τ = 3. 12

5 In (a) the number of iterations synchronous BP required to obtain a ε = 10−5 approximation on a

1000 variable chain graphical model is plotted against the strength of the pairwise potential θ. In

(b) the log average message error is plotted as a function of the walk length on the protein pair-wise

markov random fields and the UW-Languages MLN. 13

6 An illustration of the steps in the ChainSplash algorithm. (a) The chain is partitioned evenly among

the processors. (b) In parallel each processor runs the forward-backward sequential scheduling. The

forward sweep updates messages towards the center vertex and the backwards sweep updates mes-

sages towards the boundary. This slightly abnormal forward-backward sweep will be more natural

when we generalize to arbitrary cyclic graphs in the Parallel Splash Algorithm. (c) Messages that

cross the processor boundaries are exchanged and steps (b) and (c) are repeated until convergence. . 16

7 A splash of splash size W = 170 is grown starting at vertex F . The Splash spanning tree is repre-

sented by the shaded region. (a) The initial factor graph is labeled with the vertex work (wi) associated

with each vertex. (b) The Splash begins rooted at vertex F with accumulated work w = 30. (c) The

neighbors of F are added to the Splash and the accumulated work increases to w = 108. (d) The

Splash expands further to include vertex B and K but does not include vertex G because doing so

would exceed the maximum splash size of W = 170. (e) The splash expand once more to include

vertex C but can no longer expand without exceeding the maximum splash size. The final Splash or-

dering is σ = [F,E,A, J,B,K,C]. (f) The SendMessages operation is invoked on vertex C causing

the messages mC→B , mC→G, and mC→D to be recomputed. 20

iii

8 In this figure, we plot the number of vertex updates needed to run a randomly generated chain graph-

ical model to convergence. Run-time to convergence is measured in vertex updates rather than wall

clock time to ensure a fair algorithmic comparison and eliminate hardware and implementation effects

which appear at the extremely short run-times encountered on these simple models. (a) The number of

vertex updates made by Sequential Splash BP, fixing the chain length to 1000, and varying the splash

size. (b) The number of vertex updates made by various BP algorithms varying the length of the chain.

Two plots are used to improve readability since the Splash algorithm is an order of magnitude faster

than the Synchronous and Round-Robin algorithms. Note the difference in the scale of the Y axis.

The Splash algorithm curve is the same for both plots. 23

9 (a) The running time of the Splash algorithm using various different Splash sizes,W with and without

pruning. By enabling pruning and setting the Splash size sufficiently large we are able to obtain the

optimal Splash size automatically. (b) Splash pruning permits the construction of irregular spanning

trees that can adapt to the local convergence structure. The vertices with high belief residual,shown in

black, are included in the splash while vertices with belief residual below the termination threshold,

shown in gray are excluded. (c) The execution of the Splash algorithm on the denoising task illustrates

the advantages of Splash pruning. The cumulative vertex updates are plotted with brighter regions

being updates more often than darker regions. The execution is divided into 4 distinct phases. Initially,

large regular (rectangular) Splashes are evenly spread over the entire model. As the algorithm proceeds

the Splashes become smaller and more irregular focusing on the challenging regions of the model. . 27

10 We use the synthetic denoising task (also used in Fig. 9) to illustrate the difficult in estimating the

update patterns of Splash belief propagation. (a) The original synthetic sunset image which was

specifically created to have an irregular update pattern. (b) The synthetic image with Gaussian noise

added. (c) Factor graph model for the true values for the underlying pixels. The latent random variable

for each pixel is represented by the circles and the observed values are encoded in the unary factors

drawn as shaded rectangles. (d) The update frequencies of each variable plotted in log intensity scale

with brighter regions updated more frequently. (e) Uniformed Ui = 1 balanced partitioning. (f) The

informed partitioning using the true update frequencies after running Splash. Notice that the informed

partitioning assigns fewer vertices per processors on the top half of the image to compensate for the

greater update frequency. (g) The distribution of vertex update counts for an entire execution. (h)
Update counts from first the half of the execution plotted against update counts from the second half

of the execution. This is consistent with phases of execution described in Fig. 9(c). 32

11 Over-partitioning can help improve work balance by more uniformly distributing the graph over the

various processors. (a) A two processor uninformed partitioning of the denoising factor graph can

lead to one processor (CPU1) being assigned most of the work. (b) Over-partitioning by a factor of 6

can improve the overall work balance by assigning regions from the top and bottom of the denoisining

image to both processors. 34

12 The effect of over-partitioning on the work balance and communication cost. For all points 30 trials

with different random assignments are used and 95% confidence intervals are plotted. (a) The ratio of

the size of the partition containing the most work, relative to the ideal size (smaller is better). (b) The

communication cost relative to the informed partitioning (smaller is better). 34

iv

13 Here we plot the balance and communication costs of incremental repartitioning
against the number of epochs (repartitioning phases) in a single execution. The bal-
ance is measured as the work ratio between the smallest and largest work block. We
present the messages transmitted measured relative to the optimal performance for
a single phase rather than raw message counts. (a,b) The balance and communi-
cation costs for optimal phased partitioning where the update counts in each phase
are known in advance. (c,d) The balance and communication costs for naive phased
partitioning where the update counts in each phase are assumed to be the update
counts observed in the previous phase. 35

14 The distributions of the variable degree and factor dynamic range help characterize the connectivity

structure of a network. In (a), (b), (c), (d), and (e) we plot the empirical distribution of the log(degree)

of the variables. Models like the large Markov Logic Networks ((a) and (b)) have irregular degree

distributions with many sparsely connected variables and many very densely connected variables. Al-

ternatively the protein side-chain factor graphs have a more uniform degree distribution and therefore

connectivity structure. In (f), (g), (h), (i), and (j) we plot the distribution of the dynamic range (?)

given by maxxu,xv log
“
ψu(xu)
ψv(xv)

”
. Higher dynamic ranges imply more deterministic potentials and

therefore stronger coupling between the variables. 40
15 We assessed the accuracy of Splash algorithm using the exact inference challenge networks from ? as

well as the protein side chain prediction networks obtained from Yanover et al.. In (a) and (b) we plot

the average and max L1 error in the belief estimates for all variables as a function of the running time.

In (c) we plot the prediction accuracy of the MAP estimates as a function of the running time. In all

cases we find that Splash belief propagation achieves the greatest accuracy in the least time. 42
16 The Splash algorithm demonstrates faster and more consistent convergence than other baseline algo-

rithms on a single processor. In the number of converged (β = 10−5) networks (out of 276) is plotted

against the runtime (a) and number of message calculations (b). 43
17 We assessed runtime and convergence on the elidan protein-protein interaction networks. In (a) and

(b) we plot the runtime in seconds and the work in message computations for each algorithm on each

network. Each bar represents a different algorithm in the order Splash, Residual, Wildfire, Round-

Robin, and Synchronous from left (darkest) to right (lightest). 43
18 Shared memory results for the 1a76 Protein Network 45
19 Shared memory results for the Elidan-1 Protein Network 45
20 Shared memory results for the Cora-1 MLN . 45
21 Shared memory results for the UW-AI MLN . 45
22 Shared memory results for the UW-Systems MLN 45
23 Distributed Parallel Results for the Elidan1 Protein Network 47
24 Distributed Parallel Results for the UW-Systems MLN 48
25 Distributed Parallel Results for the UW-AI MLN 48
26 (a): Given a vertex of degree d with all incoming messages equal to [1− ε, ε]. This

graph plots the L1 change of belief on a vertex of degree d caused by changing one
message to [ε, 1− ε]. (b): Similar to (a), but plots on the X-axis the L1 change of
the message, which corresponds to exactly 2− 4ε. 50

v

List of Tables

1 The work associated with each vertex in Fig. 7(a) is computed using Eq. (7.1). We have omitted

vertices I , J , K, and L sinc they are equivalent to vertices D, A, B, and C respectively. 19
2 Comparison of uninformed and informed partitionings with respect to communication cut cost and

work balance. While the communication costs of the uniformed partitionings are comparable to those

of the informed partitionings, the work imbalance of the uninformed cut is typically greater. 33
3 We evaluated the Splash belief propagation algorithm on a wide range of graphical models. These

networks drawn from several different domains have varying sparsity structure, variable arity, and size.

The columns |X |, |F|, and |E| correspond to the number of variables, factors, and edges respective. 40

vi

1. Introduction

Exponential gains in hardware technology have enabled increasingly sophisticated machine learning
techniques to be applied to rapidly growing real-world problems. Physical and economic limitations
have forced computer architecture towards parallelism and away from exponential frequency scal-
ing. Meanwhile, increased access to ubiquitous sensing and the web have resulted in an explosion
in the size of machine learning tasks. In order to benefit from current and future trends in processor
technology we must discover, understand, and exploit the available parallelism in machine learning.

The true potential of parallelism is more than just a linear speedup: it is the ability to automati-
cally access present and future exponential gains in processor technology. While parallel computing
is a well developed field with a rich research history, decades of exponential frequency scaling have,
until recently, hindered its mass adoption. Around 2003, a wide range of factors including wire de-
lay, clock jitter, and infeasible power and cooling demands (Asanovic et al., 2006), forced processor
manufactures away from frequency scaling and towards parallel scaling. Driven by the sustained
transistor doubling promised by Moore’s law and multi-core inspired market forces, it is widely
believed that the parallelism available on a single platform will continue to grow exponentially for
the foreseeable future (Asanovic et al., 2006).

As ubiquitous online services powered by large parallel clusters catalog the flood of information
we produce every day, we are faced with an explosion in the computational scale of machine learn-
ing. The blogosphere and online image and video databases are growing rapidly enabling richer
automated learning opportunities but defying our sequential computational abilities. By exposing
cluster level parallelism our algorithms will be able to scale with data collection systems.

Ideally, we would like to expose parallelism throughout machine learning by developing only
a few core parallel algorithms. Graphical models provide a common language for representing
statistical models in machine learning. Inference, the process of calculating marginals and condi-
tionals of probability distributions, is the primary computationally intensive procedure in learning
and reasoning with graphical models. Therefore by providing an efficient parallel graphical model
inference algorithm, we can expose parallelism in a wide range of machine learning applications.

While there are many popular algorithms for inference in graphical models, one of the most
popular is belief propagation. As part of this project, we developed a theoretical understanding
of the available parallelism in the belief propagation algorithm, revealing the hidden sequential
structure of the parallel message scheduling. Using our theoretical foundation, we developed Par-
allel Splash belief propagation a new parallel approximate inference algorithm, which performs
asymptotically better than the natural direct parallelization of belief propagation. Furthermore we
found that the Splash Belief Propagation algorithm outperforms synchronous, round-robin, wild-fire
(Ranganathan et al., 2007), and residual (Elidan et al., 2006) belief propagation even in the single
processor setting. We thoroughly evaluate the performance of the Parallel Splash belief propagation
algorithm on several challenging real-world tasks using high performance shared and distributed
memory systems. More specifically, our key contributions are:

• A Map-Reduce based parallelization of Synchronous belief propagation and an analysis of its
parallel scaling and efficiency.
• The τε-approximation for characterizing approximate inference and a lower bound on the

theoretically achievable parallel running time for belief propagation.
• The ChainSplash algorithm for optimal parallel inference on chain graphical models.

1

• The Splash operation which generalizes the optimal forward-backward subroutine of the
ChainSplash algorithm to arbitrary cyclic graphical models.
• Belief residual prioritization and convergence assessment for improved dynamic scheduling
• The DynamicSplash Operation which uses belief residual scheduling to automatically and

dynamically adjust the shape and size of the Splash operation
• The efficient shared and distributed memory Parallel Splash inference algorithms which com-

bine the DynamicSplash procedure with the new belief residual scheduling.
• A simple, effective over-segmentation procedure to improve work balance in the distributed

setting.
• An extensive empirical evaluation of our new algorithm and its components in both the shared

and distributed memory setting on large scale synthetic and real-world inference problems.

2. Computational Models

Unlike the sequential setting where most processor designs faithfully execute a single random ac-
cess computational model, the parallel setting has produced a wide variety of parallel architectures.
In this work we focus on Multiple Instruction Multiple Data (MIMD) parallel architectures which
includes multicore processors and parallel clusters. The MIMD architecture permits each processor
to asynchronously execute its own sequence of instruction (MI) and operate on separate data (MD).
We exclude Graphics Processing Units (GPUs) which are more typically1 considered Single Instruc-
tion Multiple Data (SIMD) parallel architectures. Furthermore we divide the MIMD architectures
into Shared Memory (SM-MIMD) represented by multi-core processors and Distributed Memory
(DM-MIMD) represented by large commodity clusters. This section will briefly review the design
and unique opportunities and challenges afforded by shared and distributed memory MIMD systems
in the context of parallel machine learning.

2.1 Shared Memory

The shared-memory architectures are a natural generalization of the standard sequential proces-
sor to the parallel setting. As part of this project we assumed that each processor is identical and
has symmetric access to a single shared memory. All inter-processor communication is accom-
plished through shared memory and is typically very fast (on the order of 10s of clock cycles).
Consequently, shared memory architectures are particularly convenient because they do not require
partitioning the algorithm state and enable frequent interaction between processors.

The class of parallel architectures that implement symmetric access to shared memory are com-
monly referred to as symmetric multi-processors (SMP). Most modern SMP systems are composed
of one or more multi-core processors. Each multi-core chip is itself composed of several processors
typically sharing a local cache. These systems must therefore implement sophisticated mechanisms
to ensure cache coherency, limiting the potential for parallel scaling. Nonetheless, moderately sized
mutli-core/SMP can be found in most modern computer systems and even in many embedded sys-
tems. It is expected that the number of cores in standard SMP systems will continue to increase
(Asanovic et al., 2006).

While multi-core systems offer the convenience of shared memory parallelism they introduce
challenges in data intensive computing. By dividing the already limited bandwidth to main mem-

1. Recent trends suggest that future GPUs will increasingly permit MIMD style parallelism

2

Processor 1

Processor 2

Processor n

…
Symmetric

Access
Memory

Low Latency
High Bandwidth

…

(a) Shared Memory

Processor 1

Local Fast
Memory

…

Reliable Network

Processor 2

Local Fast
Memory

Processor n

Local Fast
Memory

(b) Distributed Memory

Figure 1: The two common parallel architectures encountered in typical commodity hardware. (a) The standard shared
memory architectural model consists of a collection of processors that have low latency high bandwidth ac-
cess to a single uniform address space. All inter-processor communication is accomplished through the
shared memory. (b) The standard distributed memory architectural model consists of a collection of proces-
sors each with their own local memory which are able to communicate by passing messages across a reliable
but typically slow communication network.

ory over several processors, multi-core systems quickly become memory bandwidth constrained.
Therefore, efficient multi-core algorithms need to carefully manage memory access patterns.

2.2 Distributed Memory and Cluster Computing

Distributed memory architectures are composed of a collection of independent processors each with
its own local memory and connected by a relatively slow communication network. Distributed
memory algorithms must therefore address the additional costs associated with communication and
distributed synchronization. While there are many performance and connectivity models for dis-
tributed computing (Bertsekas and Tsitsiklis, 1989), most provide point-to-point routing, a maxi-
mum latency which scales with the number of processors, and a limited bandwidth.

While the distributed setting often considers systems with network and processor failure, we
assume that the all resources remain available throughout execution and that all messages eventually
reach their destination. While this assumption is unrealistic on extremely large commodity parallel
systems we believe that a relatively simple check-pointing mechanism would be adequate for the
algorithms we present and more sophisticated failure recovery mechanisms are beyond the scope of
this work.

Computer clusters ranging from several hundreds to thousands of processors are the most com-
mon instantiation of the distributed memory model. These system typically employ fast commodity
networks with switch hierarchies or highly tuned system specific interconnects. Often distributed
memory systems are composed of smaller shared memory systems, typically having several multi-
core processors at each node. Here we will use the term node to refer to a single machine on
the network and we will use the term processor to refer each processing element. For instance, a
network of 8 machines, each with 2 quad-core CPUs, has 8 nodes, 64 processors.

By eliminating the need for cache coherency, the distributed memory model permits the con-
struction of substantially larger systems and also offers several key advantages to highly data in-
tensive algorithms. Because each processor has its own memory and dedicated bus, the distributed
memory setting provides linear scaling in memory capacity and memory bandwidth. In heavily

3

data intensive algorithms linear scaling in memory can provide substantial performance gains by
eliminating memory bottlenecks and permitting super-linear performance scaling.

Because of the latency associated with network communication and the limited network band-
width, efficient algorithms in the distributed memory model must minimize inter-processor com-
munication. Consequently, efficient distributed memory algorithms must deal with the challenges
associated with partitioning both the state and execution in a way that minimizes network congestion
while still ensuring that no one processor has disproportionally greater work.

3. Graphical Models

Large probabilistic models are frequently used to represent and reason about uncertainty. Graphical
models exploit conditional independence assumptions to provide a compact representation for large
probabilistic models. As we will demonstrate, both the graphical structure as well as the associated
factors combine to form the basis for the limiting sequential computational component associated
with operations on large probability distributions. Here we will briefly discuss the classes of graph-
ical models considered in this project and introduce the necessary notation.

Many important probabilistic models may be represented by factorized distributions of the form:

P (x1, . . . , xn | θ) =
1

Z(θ)

∏
c∈C

ψc(xc | θ), (3.1)

where P (x1, . . . , xn) is the probability mass function for the set of variables X = {X1, . . . , Xn}.
Each clique c ∈ C, is a small subset, c ⊂ {1, . . . , n}, of indicies and the clique set C is the set
of cliques. The factors F = {ψc : c ∈ C} are un-normalized positive functions, ψc : xc → R+,
which map the assignments of subsets of random variables to the positive reals and depend on
the parameters θ. We use the bold-faced xc to denote an assignment to the subset of variables
in the clique c. Since the focus of this work is inference and not learning2, we will assume that
the parameters, represented by θ, are fixed in advance. For notational simplicity we will omit the
conditional parameters from the factors. The log-partition function Z(θ) is the normalizing constant
which depends only on the parameters θ and has the value

Z(θ) =
∑
X

∏
α∈C

ψc(xc | θ), (3.2)

computed by summing over the exponentially many joint assignments. We focus on discrete random
variables Xi ∈ {1, . . . , Ai} = Ai taking on a finite set of Ai discrete values, even though the
algorithms and techniques proposed in later sections may be easily extended to Guassian random
variables (Weiss and Freeman, 2001) or other continuous variables (Ihler and McAllester, 2009).
For notational convenience we will define Aψc =

∏
i∈cAi as the size of the domain of ψc.

3.1 Factor Graphs

Factorized distributions of the form Eq. (3.1) may be naturally represented as an undirected bipartite
graph G = (V,E) called a factor graph. The vertices V = X ∪ F correspond to the variables and
factors and the edges E = {{ψα, Xi} : i ∈ α} connect factors with the variables in their domain.

2. It is important to note that while this focus of this work is graphical model inference and not the learning, inference
is a key step in parameter learning.

4

ψ{1,2,3} ψ{2,3,4}X1

X2

X3

X4

Figure 2: The factor graph corresponding to the factorized distribution P (x1, x2, x3, x4) ∝ ψ{1,2,3}(x1, x2, x3)
ψ{2,3,4}(x2, x3, x4). The circles represent variables and the squares represent factors.

To simplify notation, we use ψi, Xj ∈ V to refer to vertices when we wish to distinguish between
factors and variables, and i, j ∈ V otherwise. We define Γi as the neighbors of i in the factor graph.
In Fig. 2 we illustrate a simple factor graph with 4 variables and 2 factors.

Factor graphs can be used to compactly represent a wide range of common probabilistic models,
from Markov Logic Networks (MLNs) (Domingos et al., 2008) for natural language processing to
pairwise Markov Random Fields (MRFs) for protein folding (Yanover and Weiss, 2002) and image
processing (A. Saxena, 2007; Li, 1995). The clique sizes and connectivity of these graphs varies
widely. The factor graphs corresponding to MLNs encode the probability of truth assignments to
a logic and can often have large factors and a highly irregular connectivity structure with a few
variables present in many of the factors. Meanwhile, the factor graphs corresponding to pairwise
Markov Random Fields have clique sizes of at most two (e.g., ∀c ∈ C : |c| ≤ 2). Pairwise MRFs
may be represented by an undirected graph where the vertices correspond to variables and their
associated unary factors and edges correspond to the binary factors. Many MRFs are constructed
from regular templates which form grids, which are often be planar in the case of image processing,
or small three dimensional cliques in the case of protein folding. In addition, Bayesian Networks,
which are used in a wide range of applications including Hidden Markov Models, can be naturally
transformed into a factor graph by replacing the associated conditional probability tables with fac-
tors and connecting all the variables in the domain. Like Markov Logic Networks, the corresponding
factor graphs can have highly irregular structures.

3.2 Belief Propagation

Estimating marginal distributions is essential to learning and reasoning about large graphical mod-
els. While graphical models provide a compact representation, computing marginals, conditionals,
and even the joint probability can often be intractable. Computing exact marginals and conditionals
is NP-hard in general (Cooper, 1990) and even computing bounded approximations is known to be
NP-hard (Roth, 1993). Nonetheless, there are several approximate inference procedures which often
perform well in practice. In this project we focus on Belief Propagation, one of the more popular ap-
proximate inference algorithms, which is often believed to be naturally amenable to parallelization
(Mendiburu et al., 2007; Sun et al., 2003).

Belief propagation, or the Sum-Product algorithm, was originally proposed by Pearl (1988)
and estimates variable and clique marginals by iteratively updating parameters along edges in the
factor graph until convergence. The edge parameters in belief propagation are typically referred

5

to as “messages” which are computed in both directions along each edge. The message sent from
variable Xi to factor ψj along the edge (Xi, ψj) is given in Eq. (3.3) and the message sent from
factor ψj to vertex Xi along the edge (ψj , Xi) is given in Eq. (3.4).

mXi→ψj (xi) ∝
∏

k∈Γi\j

mk→i(xi) (3.3)

mψj→Xi(xi) ∝
∑
xj\xi

ψj(xj)
∏

k∈Γj\i

mk→j(xk) (3.4)

The sum,
∑

xj\xi , is computer over all assignments to xj excluding the variable xi, and the
product,

∏
k∈Γj\i, is computed over all neighbors of the vertex ψj excluding vertex Xi. The mes-

sages are typically normalized to ensure numerical stability. The local variable and factor marginals
can be estimated by combining the messages:

P (Xi = xi) ≈ bXi(xi) ∝
∏
j∈Γi

mj→i(xi) (3.5)

P (Xi = xi) ≈ bXi
(xi) ∝ ψi(xi)

∏
j∈Γi

mj→i(xj).

In acyclic factor graphs, messages are computed sequentially starting from the leaves and com-
puting only messages in the direction of an arbitrarily chosen root, and then the process is reversed
computing only the messages in the opposite direction. This message update scheduling is often
called the forward-backward scheduling and was shown by Pearl (1988) to yield exact marginals
using O (2 |E|) message calculations.

Unfortunately, choosing the best schedule on loopy graphs is often difficult and can depend
heavily on the factor graph structure and even the model parameters. For simplicity, many appli-
cations of BP adopt a synchronous schedule in which all messages are simultaneously updated
using messages from the previous iteration. Otherwise, some type of asynchronous schedule is
employed, in which messages are updated sequentially using the most recent inbound messages.
For example, the popular round-robin asynchronous schedule, sequentially updates the messages
in fixed order which is typically a random permutation over the vertices.

More recent advances by Elidan et al. (2006) and Ranganathan et al. (2007) have focused on
dynamic asynchronous schedules, in which the message update order is determined as the algorithm
proceeds. Other recent work by Wainwright et al. (2001) have focused on tree structured schedules,
in which messages are updated along collections of spanning trees. By dynamically adjusting the
schedule and by updating along spanning trees, these more recent techniques attempt to indirectly
address the schedule dependence on the model parameters and structure. As we demonstrate later,
by varying the BP schedule we can affect the speed, convergence, and parallelism of BP.

Independent of the update schedule, messages are computed until the change in message values
between consecutive computations is bounded by small constant β ≥ 0:

max
(i,j)∈E

∣∣∣∣∣∣m(new)
i→j −m

(old)
i→j

∣∣∣∣∣∣
1
≤ β. (3.6)

Belief propagation converges if at some point Eq. (3.6) is achieved. Unfortunately, in cyclic
graphs there are limited guarantees that belief propagation will converge (Tatikonda and Jordan,

6

2002; Ihler et al., 2005; Mooij and Kappen, 2007). To improve convergence in practice, damping of
the form given in Eq. (3.7) is often used with α ∈ [0, 1). In our theoretical analysis, we will assume
α = 0 however in our experiments we will typically use a damping value α = 0.3.

mψj→Xi(xi)
(new) ∝ α×mψj→Xi(xi)

(old) + (1− α)
∑
xj\xi

ψj(xj)
∏

k∈Γj\i

mk→j(xk) (3.7)

While there are few guarantees for convergence or correctness, belief propagation on cyclic
graphs is used extensively with great success as an approximate inference algorithm (McEliece
et al., 1998; Sun et al., 2003; Yedidia et al., 2003; Yanover and Weiss, 2002). For a more detailed
review of the belief propagation algorithm and it generalizations we recommend reading the tutorial
by Yedidia et al. (2003).

3.3 Opportunities for Parallelism in Belief Propagation

Belief propagation offers several opportunities for parallelism. At the graph level, multiple mes-
sages can be computed in parallel. At the factor level, individual message calculations (sums and
products) can be expressed as matrix operations which can be parallelized relatively easily (See
Bertsekas and Tsitsiklis (1989) for details). For typical message sizes where Ai << n, graph level
parallelism is asymptotically more beneficial than factor level parallelism. Therefore, we did not
provide a treatment of message level parallelism in this project, but concentrated on graph level
parallelism instead. Running time is measured in terms of the number of message computations,
treating individual message updates as atomic unit time operations.

Xia and Prasanna (2008) and Pennock (1998) explored parallel transformations of the graph
which go beyond the standard message calculations. While these techniques expose additional par-
allelism they require low treewidth models and tractable exact inference, which are strong require-
ments when operating on massive real-world distributions. In this project we restricted our attention
to message passing algorithms on the original graph and do not require low treewidth models.

4. Parallel Synchronous Belief Propagation

Synchronous belief propagation is an inherently parallel algorithm. Given the messages from the
previous iteration, all messages in the current iteration can be computed simultaneously and in-
dependently without communication. This form of completely independent computation is often
deemed embarrassingly parallel3. In this section we will introduce, the Bulk Synchronous Parallel
belief propagation (BSP-BP) algorithm, which is a natural parallelization of Synchronous belief
propagation. We will also show how the BSP-BP algorithm can be represented in the popular Map-
Reduce framework for large scale data parallel algorithms.

4.1 Bulk Synchronous Parallel Belief Propagation

A Bulk Synchronous Parallel (BSP) algorithm is an iterative parallel algorithm where each iteration
consists of an embarrassingly parallel computation phase followed by a synchronized communica-
tion phase. All processors must complete the previous iteration before a processor may enter the

3. Embarrassing parallelism is the form of parallelism that is trivially achievable and which would be “embarrassing”
not to exploit.

7

Algorithm 1: Bulk Synchronous Parallel Belief Propagation BSP-BP
t← 0 ;
while Not Converged do

// Embarrassingly Parallel Phase
forall (u, v) ∈ E do in parallel

m
(t+1)
u→v ← Update(m(t)) ;

// Synchronization Phase

Exchange m(t+1) among processors ;
t← t+ 1 ;

next iteration. We define Synchronous BP in the BSP model in Alg. 1 where on each iteration
all messages are computed in parallel in the computation phase and then the new messages are ex-
changed among processors in the communication phase. In the shared memory setting messages are
exchanged by keeping entirely separate old and new message sets and swapping after each iteration.
In the distributed memory setting messages must be sent over the communication network.

In each iteration of the BSP-BP algorithm (Alg. 1) there are O (|E|) message computations all
of which may run in parallel. This fully synchronous form of parallel update is referred to as a
Jacobi update in traditional parallel algorithms literature and is often considered ideal as it exposes
substantial parallelism. The synchronization phase can be accomplished efficiently in the shared
memory setting by swapping address spaces. However, in the distributed setting the synchronization
may require substantial communication.

The task of assessing convergence in Alg. 1 requires additional care. In particular, we must
identify whether there exists at least one message which has changed by more than β. In the shared
memory setting, convergence assessment is easily accomplished by maintaining concurrent-read,
concurrent-write access to a global boolean flag. In the distributed memory setting, one does not
have the convenience of a cheap globally accessible memory pool and more complex algorithms are
needed. We will return to the task of global termination assessment in greater detail in Sec. 9.3.

4.1.1 MAP-REDUCE BELIEF PROPAGATION

The Synchronous BP algorithm may also be expressed in the context of the popular Map-Reduce
framework. The Map-Reduce framework, introduced by Dean and Ghemawat, concisely and el-
egantly represents algorithms that consist of an embarrassingly parallel map phase followed by a
reduction phase in which aggregate results are computed. Because Map-Reduce simplifies design-
ing and building large scale parallel algorithms, it has been widely adopted by the data-mining and
machine learning community (Chu et al., 2006). The Map-Reduce abstraction was not originally
designed for iterative algorithms and so many of the standard implementations incur a costly com-
munication and disk access penalty between iterations.

A Map-Reduce algorithm is specified by a Map operation, which is applied to each data atom
in parallel, and a Reduce operation, which combines the output of the mappers. Synchronous BP
can naturally be expressed as an iterative Map-Reduce algorithm where the Map operation (defined
in Alg. 2) is applied to all vertices and emits destination-message key-value pairs and the Reduce
operation (defined in Alg. 3) joins messages at their destination vertex and prepares for the next
iteration.

8

Algorithm 2: Map Function for Synchronous BP
Input : A vertex v ∈ V and all inbound messages {mi→v}i∈Γv
Output: Set of outbound messages as key-value pairs (j,mv→j)
forall j ∈ Γv in the neighbors of v do in parallel

Compute Message mv→j using {mi→v}i∈Γv
;

return key-value pair (j,mv→j);

Algorithm 3: Reduce Function for Synchronous BP
Input : The key-value pairs {(v,mi→v)}i∈Γv
Output: The belief bv for vertex v as well as the {(v,mi→v)}i∈Γv

pairs (j,mv→j)
Compute the belief bv for v using {(v,mi→v)}i∈Γv

;
Return bv and {(v,mi→v)}i∈Γv

;

4.2 Runtime Analysis

While it is not possible to analyze the running time of parallel Synchronous belief propagation on a
general cyclic graphical model, we can analyze the running time on tree graphical models. To aid
in our analysis we introduce the concept of awareness. Intuitively, awareness captures the “flow” of
message information along edges in the graph. If messages are passed sequentially along a chain of
vertices starting at vertex i and terminating at vertex j then vertex j is aware of vertex i.

Definition 4.1 (Awareness) Vertex j is aware of vertex i if there exists a path (v1, . . . , vk) from
v1 = i to vk = j in the factor graph G and a sequence of messages [m(t1)

v1→v2 , . . . ,m
(tk)
vk−1→vk] such

that each message was computed after the previous message in the sequence t1 < . . . < tk.

In Theorem 4.1 we use the definition of awareness to bound the running time of Synchronous
belief propagation on acyclic graphical models in terms of the longest path.

Theorem 4.1 (Parallel Synchronous BP Running Time) Given an acyclic factor graph with n
vertices, longest path length d, and p ≤ 2(n − 1) processors, parallel synchronous belief prop-
agation will compute exact marginals in time (as measured in number of vertex updates):

Θ
(
nd

p
+ d

)
.

Proof On the kth iteration of parallel synchronous belief propagation, all vertices are aware of all
reachable vertices at a distance k or less. If the longest path contains d vertices then it will take
d iterations of parallel Synchronous belief propagation to make all vertices aware of each other in
an acyclic graphical model. Therefore, parallel Synchronous belief propagation will converge in
d iterations. Each iteration requires 2(n − 1) message calculations, which we divide evenly over
p processors. Therefore it takes d2 (n− 1) /pe time to complete a single iteration. Thus the total
running time is:

d

⌈
2 (n− 1)

p

⌉
≤ d

(
2 (n− 1)

p
+ 1
)
∈ Θ

(
nd

p
+ d

)
9

1

(a) Single Sequential

1

2

(b) Optimal Parallel

Figure 3: (a) The optimal forward-backwards message ordering for exact inference on a chain using a single processor.
(b) The optimal message ordering for exact inference on a chain using two processors. Note that it is not
possible to construct a parallel message scheduling which uses more than two processors without introducing
additional unnecessary work.

If we consider the running time given by Theorem 4.1 we see that the n
p term corresponds to the

parallelization of each synchronous update while the overall running time is limited by the length
of the longest path d which determines the number of synchronous updates. The length of the
longest path is therefore the limiting sequential component which cannot be eliminated by scaling
the number of processors.

As long as the number of vertices is much greater than the number of processors, the Syn-
chronous algorithm achieves linear parallel scaling and therefore appears to be an optimal parallel
algorithm. However, an optimal parallel algorithm should also be efficient. That is, the total work
done by all processors should be asymptotically equivalent to the work done by a single processor
running the optimal sequential algorithm. We will now show that the synchronous algorithm can
actually be asymptotically inefficient.

4.2.1 ANALYSIS OF BULK SYNCHRONOUS BELIEF PROPAGATION ON CHAINS

In Theorem 4.1 we showed that the parallel runtime synchronous belief propagation depends on the
length of the longest sub-chain. To illustrate the inefficiency of parallel synchronous belief propa-
gation, we analyze the running time on a chain graphical model with n vertices. Chain graphical
models act as a theoretical benchmark for parallel belief propagation because they directly capture
the limiting sequential structure of belief propagation (through the concept of awareness) and can
be seen as a sub-problem in both acyclic and cyclic graphical models.

Chain graphical models are the worst case graphical model structure for parallel belief propaga-
tion because they contain only a single long path. The branching structure of trees permits multiple
longest paths each with the limiting parallel performance of the chain. In cyclic graphical models,
the longest paths in the unrolled computation graph again reduces to the chain graphical model.

It is well known that the forward-backward schedule (Fig. 3(a)) for belief propagation on chains
is optimal. The forward-backward schedule, as the name implies, sequentially computes mes-
sages (m1→2, . . . ,mn−1→n) in the forward direction and then sequentially computes messages
(mn→n−1, . . . ,m2→1) in the backward direction. The running time of this simple schedule is there-
fore Θ (n) or exactly 2(n− 1) message calculations.

If we run the parallel synchronous belief propagation algorithm using p = 2(n− 1) processors
on a chain graphical model of length n, we obtain a running time of exactly n − 1. This means

10

that parallel synchronous belief propagation obtains only a factor of two speedup using two pro-
cessors per edge, almost twice as many processors as the number of vertices. More surprisingly,
if we use fewer than n − 1 processors, the parallel synchronous algorithm will be slower than the
simple sequential forward-backward algorithm running on a single processor. Finally, If we use any
constant number of processors (for example p = 2), then the parallel synchronous algorithm will
run in quadratic time while the sequential single processor algorithm will run in linear time.

What is the optimal parallel scheduling for belief propagation on chain graphical models? Recall
that in the message update equations (Eq. (3.3) and Eq. (3.4)), the message mi→j does not depend
on the message mj→i. Therefore in the sequential forward-backward algorithm, messages in the
forward pass do not interact with messages in the backward pass and therefore we can compute the
forward and backward pass simultaneously as shown in Fig. 3(b). Using only p = 2 processors, one
computing messages sequentially in the forward direction and one computing messages sequentially
in the backward direction as shown in Fig. 3(b), we obtain a running time of n − 1 and achieve a
factor of two speedup using only two processors.

While messages may be computed in any order, information (awareness) is propagated sequen-
tially. On every iteration of synchronous belief propagation only a few message computations (in
the case of chain graphical models only two message computations) increase awareness while the
rest are wasted. Unfortunately, in the case of chains there is no parallel scheduling which achieves
greater than a factor of two speedup. Furthermore, it is unclear how to generalize the optimal
forward-backward scheduling to arbitrary cyclic graphical models. In the next section we charac-
terize approximate inference in acyclic graphical models and show how this can reduce the limiting
sequential structure and expose greater parallelism.

5. τε-Approximate Inference

Intuitively, for a long chain graphical model with weak (nearly uniform) edge potentials, distant
vertices are approximately independent. For a particular vertex, an accurate approximation to the
belief may often be achieved by running belief propagation on a small subgraph around that vertex.
By limiting vertex awareness to its local vicinity, we can reduce the sequential component of belief
propagation to the longest path in the subgraph. We define (in Definition 5.1) τε as the diameter of
the subgraph required to achieve an ε level approximation accuracy.

Definition 5.1 (τε-Approximation) Given an acyclic4 factor graph, we define a τ -approximate
message m̃(τ)

i→j as the message from vertex i to vertex j when vertex j is aware of all vertices within
a distance of at least τ . Let m∗ be the vector of all messages at convergence (after running the
complete forward-backward algorithm). For a given error, ε, we define a τε-Approximation as the
smallest τ such that:

max
{u,v}∈E

∣∣∣∣∣∣m̃(τ)
u→v −m∗u→v

∣∣∣∣∣∣
1
≤ ε. (5.1)

for all messages.

An illustration of Definition 5.1 is given in Fig. 5. Suppose in the sequential forward pass we
change the message m3→4 to a uniform distribution (or equivalently disconnect vertex 3 and 4) and

4. It is possible to extend Definition 5.1 to arbitrary cyclic graphs by considering the possibly unbounded computation
tree described by Weiss (2000).

11

–

1!

" #!6 5 4 3 2 1 7
m1!2! m2!3! m3!4! m4!5! m5!6! m6!7!

m4!5! m5!6!m3!4!
~! ~! ~!

Approximate
Messages

True
Messages

m6!7!
~!

m6!7! m6!7!
~!

! = 3!

!"#$%&%'())")'

Figure 4: Above the chain graphical model we plot the sequence of messages from vertex 1 to vertex 7. For visual
clarity these messages are plotted as continuous distributions. Below the chain we plot the approximate
sequence of messages starting at vertex 4 assuming a uniform message is received from vertex 3. We see that
the message that finally arrives at vertex 7 is only ε away from the original message. Therefore for an ε level
approximation at vertex 7 messages must only be sent a distance of τ = 3.

then proceed to compute the rest of the messages from vertex 4 onwards. Assuming τε = 3 for the
chosen ε, the final approximate belief at b7 would have less than ε error in some metric (here we
will use L1-norm) to the true probability P (Xτε+1). Vertices τε apart are therefore approximately
independent. If τε is small, this can dramatically reduces the length of the sequential component of
the algorithm.

By Definition 5.1, τε is the earliest iteration of synchronous belief propagation at which every
message is less than ε away from its value at convergence. Therefore, by stopping synchronous
belief propagation after τ iterations we are computing a τε approximation for some ε. In Sec. 5.2
we relate the conventional stopping condition from Eq. (3.6) to approximation accuracy ε.

The concept of message decay in graphical models is not strictly novel. In the setting of on-
line inference in Hidden Markov Models Russell and Norvig (1995) used the notion of Fixed Lag
Smoothing to eliminate the need to pass messages along the entire chain. Meanwhile, work by Ihler
et al. (2005) has investigated message error decay along chains as it relates to robust inference in
distributed settings, numerical precision, and general convergence guarantees for belief propagation
in cyclic models. Our use of τε is to theoretically characterize the additional parallelism exposed
by an ε level approximation and to ultimate guide the design of the new optimal parallel belief
propagation scheduling.

5.1 Empirical Analysis of τε

The τε structure of a graphical model is a measure of both the underlying chain structure as well
as the strength of the factors along those structures. The strength of a factor refers to its coupling
affect on the variables in its domain. A factor that assigns relatively similar energy to all configura-
tions is much weaker than a factor that assigns disproportionately greater energy to a subset of its
assignments. Graphical models with factors that tightly couple variables along chains will require a
greater τ to achieve the same ε level approximation.

To illustrate the dependence τε on the coupling strength of the factors we constructed a sequence
of binary chain graphical models each with 1000 variables but with varying degrees of attractive and

12

−5 0 5 10

20

40

60

80

100

120

140

160

180

200

Potential Strength (θ)

Ite
ra

tio
ns

 to
 C

on
ve

rg
en

ce
(τ

)

(a) τε versus θ

5 10 15 20 25 30

10
−4

10
−2

τ

L 1 m
es

sa
ge

 e
rr

or

UW−Languages MLN

Protein Models

(b) τε versus θ

Figure 5: In (a) the number of iterations synchronous BP required to obtain a ε = 10−5 approximation on a 1000
variable chain graphical model is plotted against the strength of the pairwise potential θ. In (b) the log
average message error is plotted as a function of the walk length on the protein pair-wise markov random
fields and the UW-Languages MLN.

repulsive edge factors. We parameterized the edge factors by

ψxi,xi+1 =

{
eθ xi = xi+1

e1 otherwise

where θ is the “strength” parameter. When θ = 1, every variable is independent and we expect
τε = 1 resulting in the shortest runtime. When θ < 1 (corresponding to anti-ferromagnetic poten-
tials) alternating assignments become more favorable. Conversely when θ > 1 (corresponding to
ferromagnetic potentials) matching assignments become more favorable. We constructed 16 chains
at each potential with vertex potentials ψxi chosen randomly from Unif(0, 1). We ran synchronous
belief propagation until a fixed ε = 10−5 level approximation was achieved and plotted the number
of iterations versus the potential strength in Fig. 5(a). We observe that even with relatively strong
potentials, the number of iterations, τε, is still relatively small compared to the length of the chain.

We can further experimentally characterize the decay of message errors as a function of propa-
gation distance. On several real networks we ran belief propagation to convergence (at β = 10−10)
and then simulated the effect of replacing an arbitrary message with a uniform distribution and then
propagating that error along random paths in the graph. In Fig. 5(b) we plot the message error as
a function of distance averaged over 1000 random walks on various different factor graphs. Walks
were terminated after the error fell below the original β = 10−10 termination condition. In all cases
we see that the affect of the original message error decays rapidly.

5.2 Bounding τε Under the Contraction Mapping Assumption

We can represent a single iteration of synchronous belief propagation by a function fBP which maps
all the messages m(t) on the tth iteration to all the messages m(t+1) = fBP(m(t)) on the (t + 1)th

iteration. The fixed point is then the set of messages m∗ = fBP(m∗) that are invariant under fBP. In

13

addition, we define a max-norm for the message space∣∣∣∣∣∣m(t) −m(t+1)
∣∣∣∣∣∣
∞

= max
(i,j)∈E

∣∣∣∣∣∣m(t)
i→j −m

(t+1)
i→j

∣∣∣∣∣∣
1
, (5.2)

which matches the standard termination condition.
A common method for analyzing fixed point iterations is to show (assume) that the fBP is a

contraction mapping and then use the contraction rate to bound the number of iterations for an ε
level approximation of m∗. If fBP is a max-norm contraction mapping then for the fixed point m∗

and 0 ≤ α < 1,
||fBP(m)−m∗||∞ ≤ α ||m−m

∗||∞ .

Work by Mooij and Kappen (2007) provide sufficient conditions for fBP(m) to be a contraction
mapping under a variety of norms including the max-norm and the L1-norm and shows that BP on
acyclic graphs is guaranteed to be a contraction mapping under a particular spectral norm.

If the contraction rate α is known, and we desire an ε approximation of the fixed point, τε is the
smallest value such that ατε ||m0 −m∗||∞ ≤ ε. This is satisfied by setting

τε ≤
⌈

log(2/ε)
log(1/α)

⌉
. (5.3)

Finally, in Eq. (5.4) we observe that the convergence criterion, ||m− f(m)||∞ defined in Eq. (3.6),
is a constant factor upper bound on the distance between m and the fixed point m∗. If we desire an
ε approximation, it is sufficient to set the convergence criterion β ≤ ε(1− α).

||m−m∗||∞ = ||m− fBP(m) + fBP(m)−m∗||∞
≤ ||m− fBP(m)||∞ + ||fBP(m)−m∗||∞
≤ ||m− fBP(m)||∞ + α ||m−m∗||∞

||m−m∗||∞ ≤ 1
1− α

||m− fBP(m)||∞ (5.4)

In practice, the contraction rate α is likely to be unknown and fBP will not be a contraction map-
ping on all graphical models. Furthermore, it may be difficult to determine τε without first running
the inference algorithm. Ultimately, our results only rely on τε as a theoretical tool for compar-
ing inference algorithms and understanding parallel convergence behavior. In practice, rather than
constructing a β for a particular α and ε, we advocate the more pragmatic method of picking the
smallest possible value that resources permit.

5.3 Constructing a τε-Approximation with Parallel Belief Propagation

In practice we are interested in obtaining an τε approximation for all vertices. We can now re-
analyze our runtime bound in Sec. 4 under the τε-Approximation setting. Suppose we desire an
ε level approximation for all messages in an acyclic graphical model. As discussed earlier, a τε-
approximation can be achieved in τε iterations of synchronous belief propagation leading to the
runtime bound for parallel synchronous belief on acyclic graphical models given in Prop. 5.1. In
particular τε replaces the role of the maximum path length yielding an improved running time over
the bound given in Theorem 4.1.

14

Proposition 5.1 (Parallel Synchronous BP Running Time for a τε-Approximation) Given an acyclic
graphical model with n vertices a τε-approximation is obtained by running Synchronous BP with p
processors (p ≤ n) in running time

Θ
(
nτε
p

+ τε

)
.

However, even with the reduced runtime afforded by the τε-approximation, we can show that on
a simple chain graphical model, the performance of Synchronous BP is still far from optimal when
computing a τε approximation. Here we derive a lower bound for the running time of τε approximate
belief propagation on a chain graphical model.

Theorem 5.2 For an arbitrary chain graph with n vertices and p processors, the running time of a
τε-approximation is lower bounded by:

Ω
(
n

p
+ τε

)
.

Proof The messages sent in opposite directions are independent and the amount of work in each
direction is symmetric. Therefore, we can reduce the problem to computing a τε-approximation in
one direction (X1 to Xn) using p/2 processors. Furthermore, to achieve a τε-approximation, we
need exactly n − τε vertices from {Xτε+1, . . . , Xn} to be τε left-aware (i.e., for all i > τε, Xi is
aware of Xi−τε). By definition when n− τε vertices first become τε left-aware the remaining (first)
τε vertices are maximally left-aware.

Let each processor compute a set of k ≥ τε consecutive message updates in sequence (e.g.,
[m(1)

1→2,m
(2)
2→3, . . . ,m

(k)
k−1→k]). Notice that it is never beneficial to skip a message or compute mes-

sages out of order on a single processor since doing so cannot increase the number of vertices
made left-aware. After the first τε updates each additional message computation make exactly one
more vertex left-aware. Therefore after k message computations each processor can make at most
k − τε + 1 vertices left-aware. Requiring all p/2 processors to act simultaneously, we observe that
pre-emption will only decrease the number of vertices made τε left-aware.

We then want to find a lower bound on k such that the number of vertices made left-aware after
k iterations greater than the minimum number of vertices that must be made left-aware. Hence we
obtain the following inequality:

n− τε ≤
p

2
(k − τε + 1)

k ≥ 2n
p

+ τε

(
1− 2

p

)
− 1 (5.5)

relating required amount of work and the maximum amount of work done on the kth iteration. For
p > 2, Eq. (5.5) provides the desired asymptotic result.

We observe from Prop. 5.1, that Synchronous BP has a runtime multiplicative in τε and n
whereas the optimal bounds are only additive. To illustrate the size of this gap, consider a chain of
length n, with τε =

√
n. The Synchronous parallel belief propagation running time is O

(
n3/2/p

)
,

while the optimal running time is O (n/p+
√
n) = O (n/p). In the next section we present an

algorithm that achieves this lower bound on chains and also generalizes to arbitrary cyclic graphical
models.

15

Processor 1! Processor 2! Processor 3!

(a) Chain Partitioning

Processor 1! Processor 2! Processor 3!

(b) Parallel Forward-Backwards

Processor 1! Processor 2! Processor 3!

(c) Message Exchange

Figure 6: An illustration of the steps in the ChainSplash algorithm. (a) The chain is partitioned evenly among the
processors. (b) In parallel each processor runs the forward-backward sequential scheduling. The forward
sweep updates messages towards the center vertex and the backwards sweep updates messages towards the
boundary. This slightly abnormal forward-backward sweep will be more natural when we generalize to
arbitrary cyclic graphs in the Parallel Splash Algorithm. (c) Messages that cross the processor boundaries
are exchanged and steps (b) and (c) are repeated until convergence.

6. Optimal Parallel Scheduling on Chains

In this section we exploit the local τε structure by composing locally optimal forward-backward
sequential schedules to develop the ChainSplash Parallel Belief Propagation algorithm and achieve
the optimal running time for a τε approximation on a chain graphical model. In the subsequent
sections we generalize the ChainSplash algorithm to arbitrary cyclic graphical models to obtain our
new Parallel Splash Belief Propagation algorithm.

The ChainSplash algorithm (Alg. 4 begins by dividing the chain evenly among the p processors
as shown in Fig. 6(a). Then, in parallel, each processor runs the sequential forward-backward
algorithm on its sub-chain as shown in Fig. 6(b). Each processor exchanges messages along the
boundaries and then repeats the procedure. In Theorem 6.1 we show that the ChainSplash algorithm
achieves the optimal lower bound for a τε-approximation in a chain graphical model. Notice, the
algorithm does not require knowledge of τε and instead relies on the convergence criterion to ensure
an accurate approximation.

Theorem 6.1 (ChainSplash Optimality) Given a chain graph with n vertices and p ≤ n pro-
cessors, the ChainSplash belief propagation algorithm, achieves a τε level approximation for all
vertices in time

O

(
n

p
+ τε

)
Proof As with the lower bound proof we will consider messages in only one direction from xi to
xi+1. After each local execution of the forward-backward algorithm all vertices become left-aware
of all vertices within each processor block. After messages are exchanged the left most vertex

16

Algorithm 4: ChainSplash Belief Propagation Algorithm
Input : Chain graphical model (V,E) with n vertices
// Partition the chain over the p processors
forall i ∈ {1, . . . , p} do in parallel

Bi ←
{
xd(i−1)n/pe, . . . , xdin/pe−1

}
while Not Converged do

// Run Forward-Backward Belief Propagation on each Block
forall i ∈ {1, . . . , p} do in parallel

Run Sequential Forward-Backward on Bi
// Exchange Messages
forall i ∈ {1, . . . , p} do in parallel

Exchange messages with Bi−1 and Bi+1

becomes left-aware of the right most vertex on the preceding processor. By transitivity of left-
awareness, after k iterations, all vertices become left-aware of (k − 1)n/p vertices. We require all
vertices to be made τε left-aware and so solving for k-iterations we obtain:

τε = (k − 1)
n

p

k =
τεp

n
+ 1

Each iteration is executed in parallel in time n/p so the total running time is then:
n

p
k =

n

p

(τεp
n

+ 1
)

=
n

p
+ τε

7. The Splash Belief Propagation Algorithm

Our new Splash belief propagation algorithm generalizes the ChainSplash algorithm to arbitrary
cyclic graphical models. The Splash algorithm is composed of two core components, the Splash
routine which generalizes the forward-backward scheduling to arbitrary cyclic graphical models,
and a dynamic Splash scheduling which ultimately determines the shape, size, and location of
Splashes. We will first present the Parallel Splash algorithm as a sequential algorithm, introduc-
ing the Splash operation, belief scheduling, and how they are combined to produce a simple single
processor Splash algorithm. Then in subsequent sections we describe the parallel structure of this
algorithm and how it can efficiently be mapped to shared and distributed memory systems.

7.1 The Splash Operation

Our new algorithm is built around the Splash operation (Alg. 5 and Fig. 7) which generalizes the
forward backward scheduling illustrated in Fig. 3(a) from chains to arbitrary cyclic graphical mod-

17

Algorithm 5: Splash(v, W)
Input : vertex v
Input : maximum splash size W
// Construct the breadth first search ordering with W message

computations and rooted at v.
fifo← [] // FiFo Spanning Tree Queue
σ ← (v) // Initial Splash ordering is the root v
AccumW←

∑
w∈Γv

Aw + |Γv| ∗ Av // Total work in the Splash

visited← {v} // Set of visited vertices
fifo.Enqueue(Γv)
while fifo is not empty do

u← fifo.Dequeue()
UWork←

∑
w∈Γu

Aw + |Γu| ∗ Au
// If adding u does not cause me to exceed the work limit
if AccumW + UWork ≤W then

AccumW← AccumW + UWork
Add u to the end of the ordering σ
foreach neighbors w ∈ Γu do

if w is not in visited then
fifo.Enqueue(w) // Add to boundary of spanning tree
visited← visited ∪{w} // Mark Visited

// Make Root Aware of Leaves
foreach i ∈ ReverseOrder(σ) do1

SendMessages(i)

// Make Leaves Aware of Root
foreach i ∈ σ do2

SendMessages(i)

els. The Splash operation constructs a small tree, which we call a Splash, and then executes a local
forward-backward message scheduling on that tree, sequentially updating all messages originating
from vertices within the tree. By scheduling message calculations along a local tree, we ensure that
all message calculations increase awareness with respect to the local tree and that the algorithm is
locally optimal on tree structures.

The inputs to the Splash operation are the root vertex v and the size of the Splash, W , which
is the parameter bounding the overall work associated with executing the Splash. A Splash begins
by constructing a local spanning tree rooted at v, adding vertices in breadth first search order such
that the total amount of work in the Splash does not exceed the limit set by W . We define the work
associated with each vertex u (which could be a variable or factor) as:

wu = |Γu| ×Au +
∑
v∈Γu

Av, (7.1)

where |Γu| ×Au represents the work required to recompute all outbound messages and
∑

v∈Γu
Av

is the work required to update the beliefs of all the neighboring vertices. We update the beliefs

18

of neighboring vertices as part of the scheduling described in Sec. 7.2. Recall that when u is a
factor vertex Au represents the size of the factor (i.e., the size of the domain which is exponential
in the degree). The work wu defined in Eq. (7.1) is proportional to the running time of invok-
ing SendMessages(u). In Tab. 1 we compute the work associated with each vertex shown in
Fig. 7(a).

The local spanning tree rooted at vertex F in Fig. 7 is depicted by the shaded rectangle which
grows outwards in the sequence of figures Fig. 7(b) through Fig. 7(e). The maximum splash size is
set to W = 170. In Fig. 7(b) the Splash contains only vertex F (the root) and has total accumulated
work of w = 30. The vertices A, E, and F are added in Fig. 7(c) expanding the breadth first search
without exceeding W = 170. The effect of W = 170 is seen in Fig. 7(d) vertices B and K are
added but vertex G is skipped because including G would cause the Splash to exceed W = 170.
The maximum splash size is achieve in Fig. 7(e) when vertex C is added and no other vertices may
be added without exceeding W = 170. The final splash ordering is σ = [F,E,A, J,B,K,C].

Using the reverse of the breadth first search ordering constructed in the first phase, the SendMessages
operation is sequentially invoked on each vertex in the spanning tree (Line 1) starting at the leaves,
generalizing the forward sweep. The function SendMessages(v) updates all outbound mes-
sages from vertex v using the most recent inbound messages. In Fig. 7(f), SendMessages(C) is
invoked on vertex C causing the messages mC→B , mC→G, and mC→D to be recomputed. Finally,
messages are computed in the original σ ordering starting at the root and invoking SendMessages
sequentially on each vertex, completing the backwards sweep. Hence, with the exception of the root
vertex v, all messages originating from each vertex in σ are computed twice, once on the forwards
sweep in Line 1 and once in the backwards sweep in Line 2.

Vertex Assignments (Ai) Degree (|Γi|) Neighbor Costs
(∑

w∈Γi
|Γw|

)
Work (wi)

A 2 3 23 + 24 + 22 34
B 22 2 2 + 2 12
C 2 3 22 + 24 + 22 30
D 22 2 2 + 2 12
E 2 1 23 10
F 23 3 2 + 2 + 2 30
G 24 4 2 + 2 + 2 + 2 72
H 2 2 22 + 22 12

Table 1: The work associated with each vertex in Fig. 7(a) is computed using Eq. (7.1). We have omitted vertices I , J ,
K, and L sinc they are equivalent to vertices D, A, B, and C respectively.

We can recover the ChainSplash algorithm by repeatedly executing p parallel splashes of size
W = wn/p (where w is the work of updating a single vertex) placed evenly along the chain. We
therefore achieve the runtime lower bound for τε approximation by using the Splash operation. The
remaining challenge is determine how to place splashes in arbitrary cyclic graphical models. In the
next section, we will introduce our new belief residual scheduling, the second core element of the
parallel Splash algorithm.

19

34

34

10

30

30

12

12

12

30

12

12

72

A B C

D

E F G H

I

J K L

(a) Factor Graph

A

J

E

C

L

H

B

K

F

D

I

G

Root

W=30

(b) Splash Root

Root

W=108

A

J

E

C

L

H

B

K

F

D

I

G

(c) Splash Level 1

Root

W=132

A

J

E

C

L

H

B

K

F

D

I

G

(d) Splash Level 2

Root

W=162

A

J

E

C

L

H

B

K

F

D

I

G

(e) Splash Level 3

Root

A

J

E

C

L

H

B

K

F

D

I

G

Send
Messages

(f) SendMessages

Figure 7: A splash of splash size W = 170 is grown starting at vertex F . The Splash spanning tree is represented
by the shaded region. (a) The initial factor graph is labeled with the vertex work (wi) associated with each
vertex. (b) The Splash begins rooted at vertex F with accumulated work w = 30. (c) The neighbors of F
are added to the Splash and the accumulated work increases to w = 108. (d) The Splash expands further
to include vertex B and K but does not include vertex G because doing so would exceed the maximum
splash size of W = 170. (e) The splash expand once more to include vertex C but can no longer expand
without exceeding the maximum splash size. The final Splash ordering is σ = [F,E,A, J,B,K,C]. (f)
The SendMessages operation is invoked on vertex C causing the messages mC→B , mC→G, and mC→D to
be recomputed.

7.2 Belief Residual Scheduling

To schedule Splash operations, we extend the residual heuristic introduced by Elidan et al. (2006)
which prioritizes message updates based on their residual, greedily trying to achieve the conver-
gence criterion given in Eq. (3.6). The residual of a message is defined as the difference between its
current value and its value when it was last used (i.e.,

∣∣∣∣mnext
i→u −mlast

i→u
∣∣∣∣

1
). The residual heuristic

greedily receives the message with highest residual first and then updates the dependent message
residuals by temporarily computing their new values. Elidan et al. (2006) proposed the residual
heuristic as a greedy method to minimize a global contraction. Alternatively, one can interpret the
heuristic as a method to greedily achieve the termination condition by removing the message that is
currently failing the convergence test. In addition the residual heuristic ensures that messages which
have “converged” are not repeatedly updated.

The original presentation of the residual heuristic in Elidan et al. (2006) focuses on scheduling
the reception of individual messages. However, in the process of receiving a new message, all
outbound messages from vertex must be recomputed. The message updates in Elidan et al. (2006)
recompute temporary versions of all outbound messages using only current version of the highest
residual message and older versions of all the remaining messages. Consequently, a single high
degree vertex could be forced to recompute all outbound messages repeatedly until it has received
each inbound message.

20

In ? we defined a scheduling over vertices and not messages. The priority (residual) of a vertex
is the maximum of the residuals of the incoming messages.

ru = max
i∈Γu

∣∣∣∣mnext
i→u −mlast

i→u
∣∣∣∣

1
(7.2)

Intuitively, vertex residuals capture the amount of new information available to a vertex. Recomput-
ing outbound messages from a vertex with unchanged inbound messages results in a wasted update.
Once the SendMessages operation is applied to a vertex, its residual is set to zero and its neigh-
bors residuals are updated. Vertex scheduling has the advantage over message residuals of using all
of the most recent information when updating a message.

Additionally, there are two key flaws with using message residuals for termination and schedul-
ing. First, using message residuals as the termination criterion may lead to nonuniform convergence
in beliefs. Second, high degree vertices may often have at least one new message with high residual
however the resulting contribution to the belief and outbound messages may be minimal leading to
over scheduling of high degree vertices.

For a vertex of degree d, ε changes to individual messages can compound, resulting in up to dε
change in beliefs. In Appendix A.1 we consider the case of a binary random variable in which all d
inbound messages change from uniform [1

2 ,
1
2] to [1

2 − ε,
1
2 + ε]. We show that while the maximum

L1 message residual is bounded by 2ε the L1 change in the corresponding belief grows linearly
with d. Consequently, high degree vertices may have poorly estimated beliefs even when the overall
message residual is small.

Conversely, a large 1 − ε residual in a single message may result in a small ε change in belief
at high degree vertices. In Appendix A.2 we consider a binary random variable with d inbound
messages in which all messages are initial [1 − ε, ε]. We show that by making a large change from
[1 − ε, ε] to [ε, 1 − ε] in a single message we can actually obtain a change in belief bounded by
oε/2d−3. Consequently, high degree vertices are likely to be over-scheduled when using a message
based residual scheduling. The resulting loss in performance is compounded by the large cost of
updating a high degree vertex.

7.2.1 BELIEF RESIDUAL SCHEDULING

The goal of belief propagation is to estimate the belief for each variable. However, message schedul-
ing and convergence tests use the change in messages rather than beliefs. We showed that small
message residuals do not imply small changes in beliefs and conversely large message residuals
do not imply large changes in belief. Here we define a belief residual which addresses the prob-
lems associated with the message-centric approach and enable improved scheduling and termination
assessment.

A natural definition of the belief residuals analogous to the message residuals defined in Eq. (7.2)
is

rj =
∣∣∣∣bnew

i − bold
i

∣∣∣∣
1

(7.3)

where bold
i is the belief at vertex i the last time vertex i was updated. Unfortunately, Eq. (7.3) has

a surprising flaw that admits premature convergence on acyclic graphical models even when the
termination condition

max
i∈V

∣∣∣∣bnew
i − bold

i

∣∣∣∣
1
≤ β (7.4)

21

is set to β = 0. In Appendix A.3 we construct a simple ordering on a chain graphical model which
will terminate prematurely using the termination condition given in Eq. (7.4) even with β = 0.

An alternative formulation of the belief residual which does not suffer from premature conver-
gence and offers additional computational advantages is given by:

r
(t)
i ← r

(t−1)
i +

∣∣∣∣∣∣b(t)i − b(t−1)
i

∣∣∣∣∣∣
1

(7.5)

b
(t)
i (xi) ∝

b
(t−1)
i (xi)m

(t)
i→j(xi)

m
(t−1)
i→j (xi)

. (7.6)

b
(t−1)
i is the belief after incorporating the previous message and b(t)i is the belief after incorporat-

ing the new message. Intuitively, the belief residual defined in Eq. (7.5) measures the cumulative
effect of all message updates on the belief. As each new message arrives, the belief can be effi-
ciently recomputed using Eq. (7.6). Since with each message change we can quickly update the
local belief using Eq. (7.6) and corresponding belief residual (Eq. (7.5)), we do not need to retain
the old messages and beliefs reducing the storage requirements and the overhead associated with
scheduling.

The belief residual may also be used as the convergence condition

max
i∈V

ri ≤ β (7.7)

by terminating when all vertices have a belief residual below a fixed threshold β >= 0. Since
Eq. (7.5) satisfies the triangle inequality, it is an upper bound on the total change in belief ensuring
that the algorithm does not change while their are beliefs that have changed by more than β. Because
Eq. (7.5) accumulates the change in belief with each new message, it will not lead to premature
termination scenario encountered in the more naive belief residual definition (Eq. (7.3)).

When used as a scheduling priority, the belief residual prevents starvation. Since the belief
residual of a vertex can only increase as its neighbors are repeatedly updated, all vertices with belief
residuals above the termination threshold are eventually updated. In addition, Belief Residuals
address over-scheduling in high degree vertices since a large change in a single inbound message
that does not contribute to a significant change in the belief will not significantly change the belief
residual.

7.3 Sequential Splash Algorithm

By combining the Splash operation with the residual scheduling heuristic we obtain the Sequential
Splash algorithm given in Alg. 6. The sequential Splash algorithm maintains a shared belief residual
priority queue over vertices. The queue is initialized in random order with the priorities of all
vertices set to infinity5. This ensures that every vertex is updated at least once.

The Splash operation is applied to the vertex at the top of the queue. During the Splash operation
the priorities of vertices that receive new messages are increased using the belief residual definition.
Immediately after updating a vertex its belief residual is reset to zero. Due to the additional costs
associated with maintaining the belief residuals, the work associated with each vertex includes not
only the cost of recomputing all outbound messages but also the cost of updating the belief residuals
(recomputing the beliefs) of its neighbors.

5. The IEEE Inf value is sufficient.

22

Algorithm 6: The Sequential Splash Algorithm
Input : Constants W,β
Q← InitializeQueue(Q)
Set All Residuals to∞
while TopResidual(Q) > β do

v ← Top(Q)
Splash(Q, v, W)

0 2000 4000 6000
0

0.5

1

1.5

2

2.5

3x 10
4 Updates vs Splash Volume

Splash Volume

N
um

be
r

of
 V

er
te

x
U

pd
at

es

Splash BP

(a) Runtime versus Splash Size

2000 4000 6000 8000 10000

2

4

6

8

10

12

14

x 10
6

Chain Length

V
er

te
x

U
pd

at
es

Synchronous

Roundrobin

Splash

2000 4000 6000 8000 10000

1

2

3

4

5

6

7

8
x 10

5

Chain Length

V
er

te
x

U
pd

at
es

Wildfire

ResidualBP

Splash

(b) Runtime versus Chain Size

Figure 8: In this figure, we plot the number of vertex updates needed to run a randomly generated chain graphical
model to convergence. Run-time to convergence is measured in vertex updates rather than wall clock time
to ensure a fair algorithmic comparison and eliminate hardware and implementation effects which appear
at the extremely short run-times encountered on these simple models. (a) The number of vertex updates
made by Sequential Splash BP, fixing the chain length to 1000, and varying the splash size. (b) The number
of vertex updates made by various BP algorithms varying the length of the chain. Two plots are used to
improve readability since the Splash algorithm is an order of magnitude faster than the Synchronous and
Round-Robin algorithms. Note the difference in the scale of the Y axis. The Splash algorithm curve is the
same for both plots.

To demonstrate the performance gains of the Sequential Splash algorithm on strongly sequential
models we constructed a set of synthetic chain graphical models and evaluated the running time on
these models for a fixed convergence criterion while scaling the size of the splash in Fig. 8(a) and
while scaling the size of the chain in Fig. 8(b). As the size of the Splash expands (Fig. 8(a)) the
total number of updates on the chain decreases reflecting the optimality of the underlying forward-
backward structure of the Splash. In Fig. 8(b) we compare the running time of Splash with Syn-
chronous, Round-Robin, Residual, and Wild-fire belief propagation as we increase the size of the
model. The conventional Synchronous and Round-Robin algorithms are an order of magnitude
slower than Wild-fire, ResidualBP, and Splash and scale poorly forcing separate comparisons for
readability. Nonetheless, in all cases the Splash algorithm (with splash size W = 500) is substan-
tially faster and demonstrates better scaling with increasing model size.

7.4 The Parallel Splash Algorithm

We construct the Parallel Splash belief propagation algorithm from the Sequential Splash algorithm
by executing multiple Splashes in parallel. The abstract Parallel Splash algorithm is given in Alg. 7.

23

Algorithm 7: Parallel Splash Belief Propagation Algorithm
Input : Constants W,β
Q← InitializeQueue(Q)
Set All Residuals to∞
forall processors do in parallel1

while TopResidual(Q) > β do
v ← Pop(Q) // Atomic
Splash(Q, v, W)
Q.Push((v, Residual(v))) // Atomic

Notice that the Parallel Splash algorithm only differs from the sequential Splash algorithm in Line 1
in which p processors are set to run the sequential Splash algorithm all drawing from the same
shared queue.

While we do not require that parallel Splashes contain disjoint sets of vertices, we do require that
each Splash has a unique root which is achieved through the shared scheduling queue and atomic
Push and Pop operations. To prevent redundant message update when Splashes overlap, if multi-
ple processors simultaneously call SendMessages(i) all but one return immediately ensuring a
single update.

To achieve maximum parallel performance the Parallel Splash algorithm relies on an efficient
parallel scheduling queue to minimize processor locking and sequentialization when Push, Pop,
and UpdatePriority are invoked. While there is considerable work from the parallel computing
community on efficient parallel queue data structures, we find that in the shared memory setting ba-
sic locking queues provide sufficient performance. In the distributed Splash algorithm discussed in
Sec. 9 we employ a distributed scheduling queue in a work balanced manner to eliminate processor
contention.

7.5 Chain Optimality of Parallel Splash

We now show that, in expectation, the Splash algorithm achieves the optimal running time from
Theorem 5.2 for chain graphical models. We begin by relating the Splash operation to the vertex
residuals.

Lemma 7.1 (Splash Residuals) Immediately after the Splash operation is applied to an acyclic
graph all vertices interior to the Splash have zero belief residual.

Proof The proof follows naturally from the convergence of BP on acyclic graphs. The Splash op-
eration runs BP to convergence on the subgraph contained within the Splash. As a consequence all
messages along edges in the subgraph will (at least temporarily) have zero residual.

After a Splash is completed, the residuals associated with vertices interior to the Splash are
propagated to the exterior vertices along the boundary of the Splash. Repeated application of the
Splash operation will continue to move the boundary residual leading to Lemma 7.2.

Lemma 7.2 (Basic Convergence) Given a chain graph where only one vertex has nonzero resid-
ual, the Splash algorithm with Splash size W will run in O (τε +W) time.

24

Proof When the first Splash, originating from the vertex with nonzero residual is finished, the in-
terior of the Splash will have zero residual as stated in 7.1, and only the boundary of the Splash
will have non-zero residual. Because all other vertices initially had zero residual and messages in
opposite directions do not interact, each subsequent Splash will originate from the boundary of the
region already covered by the previous Splash operations. By definition the convergence criterion
is achieved after the high residual messages at the originating vertex propagate a distance τε. How-
ever, because the Splash size is fixed, the Splash operation may propagate messages an additional
W vertices.

If we set the initial residuals to ensure that the first p parallel Splashes are uniformly spaced,
Splash obtains the optimal lower bound.

Theorem 7.3 (Splash Chain Optimality) Given a chain graph with n vertices and p ≤ n proces-
sors we can apply the Splash algorithm with the Splash size set to W = n/p and uniformly spaced
initial Splashes to obtain a τε-approximation in expected running time

O

(
n

p
+ τε

)
Proof We set every n/p vertex

{
Xn/2p, X3n/2p, X5n/2p, . . .

}
to have slightly higher residual than

all other vertices forcing the first p Splash operations to start on these vertices. Since the height of
each splash is also W = n/p, all vertices will be visited in the first p splashes. Specifically, we note
that at each Splash only produces 2 vertices of non-zero residual (see Lemma 7.1). Therefore there
are at most O (p) vertices of non-zero residual left after the first p Splashes.

To obtain an upper bound, we consider the runtime obtained if we compute independently, each
τε subtree rooted at a vertex of non-zero residual. This is an upper bound as we observe that if a
single Splash overlaps more than one vertex of non-zero residual, progress is made simultaneously
on more than one subtree and the running time can only be decreased.

From Lemma 7.1, we see that the total number of updates needed including the initial O (p)
Splash operations is O (p(τε +W)) +O (n) = O (n+ pτε). Since work is evenly distributed, each
processor performs O (n/p+ τε) updates.

In practice, when the graph structure is not a simple chain graph, it may be difficult to evenly
space Splash operations. By randomly placing the initial Splash operations we can obtain a factor
log(p) approximation in expectation.

Corollary 7.4 (Splash with Random Initialization) If all residuals are initialized to a random
value greater than the maximum residual, the total expected running time is at mostO (log(p)(n/p+ τε)).

Proof Partition the chain graph into p blocks of size n/p. If a Splash originates in a block then it
will update all vertices interior to the block. The expected time to Splash (collect) all p blocks is up-
per bounded6 by the coupon collectors problem. Therefore, at most O (p log(p)) Splash operations
(rather than the p Splash operations used in Theorem 9.1) are required in expectation to update each

6. Since candidate vertices are removed between parallel rounds, there should be much fewer collection steps than the
analogous coupon collectors problem.

25

vertex at least once. Using the same method as in Theorem 9.1, we observe that the running time is
O (log(p)(n/p+ τε)).

7.6 Dynamic Splashes with Belief Residuals

A weakness of the Splash belief propagation algorithm is that it requires tuning of the Splash size
parameter which affects the overall performance. If the Splash size is too large than the algorithm
will be forced to recompute messages that have already converged. Alternatively, if the Splash size
is set too small then we lose optimality on local sequential structures. To address this weakness in
the Splash algorithm, we introduce Dynamic Splashes which substantially improve performance in
practice and eliminate the need to tune the Splash size parameter.

The key idea is that we can use the belief residuals to automatically adapt the size and shape
of the Splash procedure as the algorithm proceeds. In particular we modify the initial breadth first
search phase of the Splash operation, to exclude vertices with belief residuals below the termination
condition. This ensures that we do not recompute messages that have already “converged.” and
more importantly allows the Splash operation to adapt to the local convergence patterns in the factor
graph. As the algorithm approaches convergence, removing low belief residual vertices rapidly
disconnects the graph forcing the breadth first search to terminate early and causing the size of
each Splash to shrink reducing wasted updates. As a consequence, the algorithm is less sensitive
to the Splash size W . Instead we can fix Splash size to be a relatively large fraction of the graph
(i.e., n/p) and let pruning automatically decrease the Splash size as needed. The Splash procedure
with the “pruning” modification is called the DynamicSplash procedure. A complete description of
DynamicSplash is provided in Alg. 8.

We plot in Fig. 9(a) the running time of the Parallel Splash algorithm with different Splash sizes
W and with and without Splash pruning. For relatively small Splash sizes, Splash pruning has little
effect but the overall performance of the algorithm is decreased. With Splash pruning disabled there
is clear optimal Splash size where as with Splash pruning enabled increasing the size of the Splash
beyond the optimal does not reduce the performance. We have also plotted in Fig. 9(c) examples
of the Splashes at various phases of the algorithm on the classic image denoising task. Again we
see with pruning enabled the Splashes start relatively large and uniform but near convergence they
are relatively small and have adapted to local shape of the remaining non-converged regions in the
model.

8. Splash Belief Propagation in Shared Memory

The abstract parallelization of the parallel Splash algorithm presented in the previous section (Alg. 7)
can be easily mapped to the shared memory setting described in Sec. 2.1. Because the shared mem-
ory setting ensures approximately uniform access latency to all memory it is not necessary assign
ownership to messages or factors. However, because multiple processors can read and modify the
same message, we must ensure that messages and beliefs are manipulated in a consistent manner.
Here we describe a simple locking scheme to ensure message consistency.

A single mutex is associated with each vertex in the factor graph. The mutex must be acquired,
to read or update the belief associated with the vertex or any of the inbound messages to that vertex.
The details of the locking mechanism for the SendMessages routine are described in Alg. 9. For

26

0 10 20 30 40 50
50

100

150

200

250

300

Splash Size

R
un

tim
e

(S
ec

on
ds

)

With Pruning

Without Pruning

(a) Automatic Splash Size Tuning

Un-converged Vertices

Irregular Splash

Converged Vertices

(b) Irregular Splash Shape

Original
Noisy Image

Cumulative
UpdatesPhases of Execution

Phase 1 Phase 2 Phase 3 Phase 4

(c) Execution of the Splash Algorithm on the Denoising Task

Figure 9: (a) The running time of the Splash algorithm using various different Splash sizes, W with and without
pruning. By enabling pruning and setting the Splash size sufficiently large we are able to obtain the optimal
Splash size automatically. (b) Splash pruning permits the construction of irregular spanning trees that can
adapt to the local convergence structure. The vertices with high belief residual,shown in black, are included in
the splash while vertices with belief residual below the termination threshold, shown in gray are excluded. (c)
The execution of the Splash algorithm on the denoising task illustrates the advantages of Splash pruning. The
cumulative vertex updates are plotted with brighter regions being updates more often than darker regions.
The execution is divided into 4 distinct phases. Initially, large regular (rectangular) Splashes are evenly
spread over the entire model. As the algorithm proceeds the Splashes become smaller and more irregular
focusing on the challenging regions of the model.

27

Algorithm 8: DynamicSplash(Q, v, W)
Input : scheduling queue Q
Input : vertex v
Input : maximum splash size W
// Construct the breadth first search ordering with W message

computations and rooted at v.
fifo← [] // FiFo Spanning Tree Queue
σ ← (v) // Initial Splash ordering is the root v
AccumW←

∑
w∈Γv

Aw + |Γv| ∗ Av // Total work in the Splash

visited← {v} // Set of visited vertices
fifo.Enqueue(Γv)
while fifo is not empty do

u← fifo.Dequeue()
UWork←

∑
w∈Γu

Aw + |Γu| ∗ Au
// If adding u does not cause me to exceed the work limit
if AccumW + UWork ≤W then

AccumW← AccumW + UWork
Add u to the end of the ordering σ
foreach neighbors w ∈ Γu do

if Belief Residual of w is greater than β and is not in visited then
fifo.Enqueue(w) // Add to boundary of spanning tree
visited← visited ∪{w} // Mark Visited

// Make Root Aware of Leaves
foreach u ∈ ReverseOrder(σ) do

SendMessages(u)
Q.SetPriority(u, 0) // Set Belief residual to zero
foreach w ∈ Γu do

Q.UpdatePriority(w) // Recompute belief residual

// Make Leaves Aware of Root
foreach i ∈ σ do

SendMessages(i)
Q.SetPriority(u, 0) // Set Belief residual to zero
foreach w ∈ Γu do

Q.UpdatePriority(w) // Recompute belief residual

28

Algorithm 9: Locking SendMessages
Input : vertex u
foreach v ∈ Γu do

// Construct the cavity distribution
lock u

m′v→u ← bu/mv→u ;
Marginalize m′v→u if necessary ;
// Send the message to v updating the belief at v
lock v

b′v ← bv/mu→vm
′
u→v ;

mu→v ← m′u→v ;
r∆ ← ||b′v − bv||1 ;
bv ← b′v

each outbound message, the mutex is acquired and the cavity distribution is constructed from the
belief by dividing out the dependence on the corresponding inbound message. The mutex is then
released and any additional marginalization is accomplished on the cavity distribution. The mutex
on the receiving vertex is again grabbed and the new belief is computed by subtracting out the old
message value and adding back the new message value. Finally, the inbound message is updated
and the mutex is released. This locking protocol ensures that only one lock is held at a time and that
whenever a lock is grabbed the state of the inbound messages and belief are consistent.

Ensuring exclusive access to each vertex can be accomplished by introducing an addition try-
lock at each vertex. When a processor invokes SendMessages on vertex it first attempts to grab
the vertex try-lock. If the processor fails, it immediately returns skipping the local update. We
find that in practice this can improve performance when there are high degree vertices that may
participate in multiple Splashes simultaneously.

When the message computations are fairly simple, the priority queue becomes the central syn-
chronizing bottleneck. An efficient implementation of a parallel priority queue is therefore the key
to performance and scalability. There are numerous parallel priority queue algorithms in the lit-
erature (Driscoll et al., 1988; Crupi et al., 1996; Parberry, 1995; Sanders, 1998). Many parallel
priority queues require sophisticated fine grained locking mechanisms while others employ binning
strategies with constraints on the priority distribution.

Because the residual priorities are a heuristic, we find that relaxing the strict ordering require-
ment can substantially improve performance without the need for complex locking mechanisms
or constrains on priority distributions. By constructing a separate coarse locking priority queue
for each processor and then randomly assigning vertices to each queue we can reduce the queue
collision rate while maintaining reasonable load balance. While processors draw from their own
queue they must update the priorities of vertices stored in the queues owned by other processors.
Therefore, a locking mechanism is still required. If necessary, contention can be further reduced by
creating multiple queues per processor.

Ensuring that the maximum amount of productive computation for each access to memory is
critical when many cores share the same memory bus and cache. Updating all messages emanating
from a vertex in SendMessages, maximizes the productive work for each message read. The

29

sequential Splash operation ensures that all interior messages are received soon after they are sent
and before being evicted from cache. Profiling experiments indicate that Splash algorithm reduces
cache misses over synchronous BP algorithm and residual belief propagation (Splash with W = 1).

9. Distributed Splash Belief Propagation

In this section, we address the challenges associated with distributing the state of the Splash algo-
rithm over p processors in the distributed memory setting. In contrast to the shared memory set-
ting where each processor has symmetric fast access to the entire program state, in the distributed
memory setting each process can only directly access its local memory and must pass messages to
communicate with other processors. Therefore efficient distributed parallel algorithms are forced to
explicitly distribute the program state.

While the distributed memory setting may appear more limited, it offers the potential for linear
scaling in memory capacity and memory bandwidth. To fully realize the linear scaling in memory
capacity and bandwidth we must partition the program state in a way that places only a fraction 1/p
of the global program state on each processor. Achieving this memory balancing objective while
partitioning the program state in a way that ensures efficient parallel computation is the central
challenge in the design of scalable distributed parallel algorithms.

The distributed Splash algorithm consists of two phases. In the first phase (described in Sec. 9.1),
the factor graph and messages are partitioned over the processors. In the second phase, each proces-
sor executes the sequential splash algorithm on its piece of the factor graph exchanging messages
across processors as necessary. We now described the details of each phase and then present the
complete distributed algorithm.

9.1 Partitioning the Factor Graph and Messages

We begin by partitioning the factor graph and messages. To maximize throughput and hide net-
work latency, we must minimize inter-processor communication and ensure that the data needed
for message computations are locally available. We define a partitioning of the factor graph over p
processors as a set B = {B1, ..., Bp} of disjoint sets of vertices Bk ⊆ V such that ∪pk=1Bk = V .
Given a partitioning B we assign all the factor data associated with ψi ∈ Bk to the kth proces-
sor. Similarly, for all (both factor and variable) vertices i ∈ Bk we store the associated belief and
all inbound messages on the processor k. Each vertex update is therefore a local procedure. For
instance, if vertex i is updated, the processor owning vertex i can read factors and all incoming
messages without communication. To maintain the locality invariant, after new outgoing messages
are computed, they are transmitted to the processors owning the destination vertices.

By requiring that each processor manage the factors, beliefs, and all inbound belief propagation
messages, we define the storage, computation, and communication responsibilities for each proces-
sor under a particular partitioning. Ultimately, we want to minimize communication and ensure
balanced storage and computation, therefore, we can frame the minimum communication load bal-
ancing objective in terms of a graph partitioning. In particular, to evenly distribute work over the
processors while minimizing network communication we must obtain a balanced minimum cut. We

30

formally define the graph partitioning problem as:

min
B

∑
B∈B

∑
(i∈B,j /∈B)∈E

(Ui + Uj)wij (9.1)

subj. to: ∀B ∈ B
∑
i∈B

Uiwi ≤
γ

p

∑
v∈v

Uvwv (9.2)

where Ui is the number of times SendMessages is invoked on vertex i, wij is the communication
cost of the edge between vertex i and vertex j, wi is the vertex work defined in Eq. (7.1), and γ ≥ 1
is the balance coefficient. The objective in Eq. (9.1) minimizes communication while for small γ,
the constraint in Eq. (9.2) ensures work balance. We define the communication cost as:

wij = min(Ai, Aj) + Ccomm (9.3)

the size of the message plus some fixed network packet cost Ccomm. In practice we set Ccomm = 1
since it is constant for all processors and we do additional message bundling in our implementation.

Unfortunately, obtaining an optimal partitioning or near optimal partitioning is NP -Hard in
general and the best approximation algorithms are generally slow. Fortunately, there are several
very fast heuristic approaches which typically produce reasonable partitions in time O (|E|) linear
in the number of edges. Here we use the collection of multilevel graph partitioning algorithms in the
METIS (Karypis and Kumar, 1998) graph partitioning library. These algorithms, iteratively coarsen
the underlying graph, apply high quality partitioning techniques to the small coarsened graph, and
then iteratively refine the coarsened graph to obtain a high quality partitioning of the original graph.
While there are no theoretical guarantees, these algorithms have been shown to perform well in
practice and are commonly used for load balancing in parallel computing.

9.1.1 UPDATE COUNTS Ui

Unfortunately, due to dynamic scheduling, the update counts Ui for each vertex depend on the
evidence, graph structure, and progress towards convergence, and are not known before running the
Splash algorithm. In practice we find that the Splash algorithm updates vertices in a non-uniform
manner; a key property of the dynamic scheduling, which enables more frequent updates of slower
converging beliefs.

To illustrate the difficulty involved in estimating the update counts for each vertex, we again use
the synthetic denoising task. The input, shown in Fig. 10(a), is a grayscale image with independent
Gaussian noise N

(
0, σ2

)
added to each pixel. The factor graph (Fig. 10(c)) corresponds to the

pairwise grid Markov Random Field constructed by introducing a latent random variable for each
pixel and connecting neighboring variables by factors that encode a similarity preference. We also
introduce single variable factors which represent the noisy pixel evidence. The synthetic image was
constructed to have a nonuniform update pattern (Fig. 10(d)) by making the top half more irregular
than the bottom half. The distribution of vertex update frequencies (Fig. 10(g)) for the denoising
task is nonuniform with a few vertices being updated orders of magnitude more frequently than the
rest. The update patterns is temporally inconsistent frustrating attempts to estimate future update
counts using past behavior (Fig. 10(h)).

31

(a) Original Image (b) Noisy Image

~
~

~~
(c) Factor Graph (d) Update Counts

(e) Uninformed Part. (f) Informed Part.

2 4 6
0

0.5

1

1.5

2

2.5

x 10
4

Ln(Update Count)

F
re

qu
en

cy

(g) Update Distribution (h) Update Prediction

Figure 10: We use the synthetic denoising task (also used in Fig. 9) to illustrate the difficult in estimating the update
patterns of Splash belief propagation. (a) The original synthetic sunset image which was specifically cre-
ated to have an irregular update pattern. (b) The synthetic image with Gaussian noise added. (c) Factor
graph model for the true values for the underlying pixels. The latent random variable for each pixel is repre-
sented by the circles and the observed values are encoded in the unary factors drawn as shaded rectangles.
(d) The update frequencies of each variable plotted in log intensity scale with brighter regions updated
more frequently. (e) Uniformed Ui = 1 balanced partitioning. (f) The informed partitioning using the true
update frequencies after running Splash. Notice that the informed partitioning assigns fewer vertices per
processors on the top half of the image to compensate for the greater update frequency. (g) The distribution
of vertex update counts for an entire execution. (h) Update counts from first the half of the execution plot-
ted against update counts from the second half of the execution. This is consistent with phases of execution
described in Fig. 9(c).

9.1.2 UNINFORMED PARTITIONING

Given the previous considerations, one might conclude, as we did, that sophisticated dynamic graph
partitioning is necessary to effectively balance computation and minimize communication. Sur-
prisingly, we find that an uninformed cut obtained by setting the number of updates to a constant
(i.e., Ui = 1) yields a partitioning with comparable communication cost and work balance as those
obtained when using the true update counts. We designate B̂ as the partitioning that optimizes the
objectives in Eq. (9.1) and Eq. (9.2) where we have assumed Ui = 1. In Tab. 2 we construct un-
informed p = 120 partitionings of several factor graphs and report the communication cost and
balance defined as:

Rel. Com. Cost =

∑
B∈B̂

∑
(u∈B,v/∈B)∈E wuv∑

B∈B∗
∑

(u∈B,v/∈B)∈E wuv

Rel. Work Balance =
p∑

v∈V wv
max
B∈B̂

∑
v∈B

wv

32

relative to the ideal cut B∗ obtained using the true update counts Ui. We find that uninformed cuts
have lower communication costs at the expense of increased imbalance. This discrepancy arises
from the need to satisfy the balance requirement with respect to the true Ui at the expense of a
higher communication cost.

Graph Rel. Com. Cost Rel. Work Balance
denoise 0.980 3.44
uw-systems 0.877 1.837
uw-languages 1.114 2.213
cora-1 1.039 1.801

Table 2: Comparison of uninformed and informed partitionings with respect to communication cut cost and work bal-
ance. While the communication costs of the uniformed partitionings are comparable to those of the informed
partitionings, the work imbalance of the uninformed cut is typically greater.

9.1.3 OVER-PARTITIONING

Because uninformed partitions tend to have reduced communication cost and greater work imbal-
ance relative to informed partitions, we propose over-partitioning to improve the overall work bal-
ance with a small increase in communication cost. When partitioning the graph with an uninformed
cut a frequently updated subgraph may be placed within a single partition (Fig. 11(a)). To lessen
the chance of such an event, we can over-partition the graph (Fig. 11(b)) into k × p balanced parti-
tions and then randomly redistribute the partitions to the original p processors. By partitioning the
graph more finely and randomly assigning regions to different processor, we more evenly distribute
nonuniform update patterns improving the overall work balance. However, over-partitioning also
increases the number of edges crossing the cut and therefore the communication cost. By over-
partitioning in the denoise task we are able to improve the work balance (shown in Fig. 12(a)) at a
small expense to the communication cost (shown in Fig. 12(b)). Over-partitioning also helps sat-
isfy the balanced memory requirements objective by more evenly distributing the global memory
footprint over the individual processors.

Choosing the optimal over-partitioning factor k is challenging and depends heavily on hardware,
graph structure, and even factors. In situations where the Slash algorithm may be run repeatedly,
standard search techniques may be used. We find that in practice a small factor, e.g., k = 5 is
typically sufficient. When using a recursive bisection style partitioning algorithm where the true
work split at each step is an unknown random variable, we can provide a theoretical bound on the
ideal size of k. If at each split the work is divided into two parts of proportion X and 1−X where
E [X] = 1

2 and Var [X] = σ2 (σ ≤ 1
2]), Sanders (1994) shows that we can obtain work balance

with high probability if we select k at least Ω
(
p

“
log

“
1

σ+1/2

””−1)
.

9.1.4 INCREMENTAL REPARTITIONING

One might consider occasionally repartitioning the factor graph to improve balance. For example,
we could divide the execution into T phases and then repartition the graph at the beginning of each

33

CPU 1

CPU 2

(a) Denoise Uniformed Cut

1

2

2

1

1

2

1

2

1

2

2

1
(b) Denoise Over-Partitioning

Figure 11: Over-partitioning can help improve work balance by more uniformly distributing the graph over the various
processors. (a) A two processor uninformed partitioning of the denoising factor graph can lead to one
processor (CPU1) being assigned most of the work. (b) Over-partitioning by a factor of 6 can improve
the overall work balance by assigning regions from the top and bottom of the denoisining image to both
processors.

2 4 6 8 10

2

2.5

3

Partition Factor

W
or

k
B

al
an

ce
 γ

(a) Denoise Work Balance

2 4 6 8 10

1.5

2

2.5

3

Partition Factor

R
el

. C
om

. C
os

t

(b) Denoise Rel. Com. Cost

Figure 12: The effect of over-partitioning on the work balance and communication cost. For all points 30 trials with
different random assignments are used and 95% confidence intervals are plotted. (a) The ratio of the size of
the partition containing the most work, relative to the ideal size (smaller is better). (b) The communication
cost relative to the informed partitioning (smaller is better).

34

2 4 6 8 10

1.06

1.08

1.1

1.12

1.14

1.16

Number of Epochs

B
al

an
ce

(a) Optimal Balance

2 4 6 8 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Epochs

M
es

sa
ge

s
T

ra
ns

m
itt

ed

(b) Optimal Comm.

2 4 6 8 10
1.6

1.8

2

2.2

2.4

2.6

2.8

Number of Epochs

B
al

an
ce

(c) Naive Balance

2 4 6 8 10

5

10

15

20

Number of Epochs
M

es
sa

ge
s

T
ra

ns
m

itt
ed

(d) Naive Comm.

Figure 13: Here we plot the balance and communication costs of incremental repartitioning against
the number of epochs (repartitioning phases) in a single execution. The balance is mea-
sured as the work ratio between the smallest and largest work block. We present the
messages transmitted measured relative to the optimal performance for a single phase
rather than raw message counts. (a,b) The balance and communication costs for opti-
mal phased partitioning where the update counts in each phase are known in advance.
(c,d) The balance and communication costs for naive phased partitioning where the up-
date counts in each phase are assumed to be the update counts observed in the previous
phase.

phase based on the update patterns from the previous phase. To assess the potential performance
gains from incremental repartitioning we conducted a retrospective analysis. We executed the se-
quential Splash algorithm to convergence on the denoising model and then divided the complete
execution into T phases for varying values of T . We then partitioned each phase using the true
update counts for that phase and estimate the work imbalance and number of transmitted messages.
While the true update counts would not be known in practice, they provide an upper bound on the
performance gains of the best possible predictor.

In Fig. 13 we plot the performance of both optimal phased partitioning and phased partitioning
in which future update counts are predicted from previous update counts. In both cases we consider
phased partitioning for T ∈ {1, . . . , 10} phases on a simulated 16 processor system. In Fig. 13(a)
we see that by repartitioning more often we actually slightly increase the average imbalance over the
epochs. We attribute the slight increased imbalance to the increasingly irregular local update counts
relative to the connectivity structure (the regular grid). However, as seen in Fig. 13(b) the number
of messages transmitted over the network (i.e., the communication cost) relative to the optimal

35

single phase partitioning actually decreases by roughly 35%. Alternatively, using the update counts
from the previous phase to partition the next phase confers a substantial decrease in overall balance
(Fig. 13(c)) and a dramatic increase in the communication costs (Fig. 13(d)). We therefore conclude
that only in situations where update counts can be accurately predicted and network communication
is the limiting performance can incremental repartitioning lead to improved performance.

9.2 Distributing the Priority Queue

The Splash algorithm relies on a shared global priority queue. However, in the cluster computing
setting, a centralized ordering is inefficient. Instead, in our approach, each processor constructs
a local priority queue and iteratively applies the Splash operation to the top element in its local
queue. At any point in the distributed execution one of the processor is always applying the Splash
operation to the globally highest residual vertex. Unfortunately, the remaining p−1 highest vertices
are not guaranteed to be at the top of the remaining queues and so we do not recover the original
shared memory scheduling. However, any processor with vertices that have not yet converged, must
eventually update those vertices and therefore can always make progress by updating the vertex at
the top of its local queue. In Sec. 9.6 we show that the collection of local queues is sufficient to
retain the original optimality properties of the Splash algorithm.

9.3 Distributed Termination

In the absence of a common synchronized state it is difficult to assess whether a convergence con-
dition has been globally achieved. The task of assessing convergence is complicated by the fact that
when a node locally converges, it could be “woken up” at any time by an incoming message which
may causes its top residual to exceed the termination threshold.

Fortunately, this is a well studied task known as the “distributed termination problem” (Matocha
and Camp; Mattern, 1987). We implement a variation of the algorithm described in Misra (1983).
The algorithm is described in Alg. 10 and proceeds as follows.

A ring is defined over all the nodes and a token comprising of 2 integer values, NumSent and
NumReceived, is passed in one direction around the ring. The integer values represent the total
number of network messages sent and received throughout the execution of the program across
all machines. When the node holding onto the token converges, the node will add the number of
network messages it has sent and received since the last time it has seen the token, to NumSent
and NumReceived respectively. The node will then forward the token to the next node in the ring.
Global termination is achieved when the token completes a loop around the ring without changing,
and NumSent equals NumReceived

9.4 Flap Prevention

We say that a node is “flapping” if it switches rapidly between performing computation, and wait-
ing inside the Distribution Termination algorithm. Such “flapping” behavior may be observed as
the algorithm approaches termination. Nodes which have locally converged will still receive BP
messages from the nodes which have not converged. These new messages may cause the top resid-
ual to exceed the termination threshold, resulting in a very brief flurry of computation which is
immediately followed by the node reporting local convergence.

36

Algorithm 10: Distributed Termination Algorithm
Output: Converged
Data: Global Variables: LastToken, NetMessagesSent, NetMessagesReceived
// Infinite Loop
while True do

if I have the Token then
// Check for the global termination
if Token == LastToken AND Token.NumSent == Token.NumReceived then

return Converged = True
else

// Update the Token with this node’s contributions
// Reset the network message counters
Token.NumSent← Token.NumSent + NetMessagesSent
Token.NumReceived← Token.NumReceived + NetMessagesReceived
NetMessagesSent← 0
NetMessagesReceived← 0
LastToken← Token // Remember the last Token we saw
Transmit(Token, NextNode) // Send the updated token to the

next node in the ring

Sleep and Wait For Any Incoming Network Message.

if Network Message is not a Token then
// This is not a Token but a BP message. Wake up and

process it
return Converged = False

Such behavior is undesirable as the time spent waiting is wasted, and instead could be spent
performing useful computation. A plausible solution would be to avoid waiting, but to perform
computation continuously. This solution however, results in an ill-defined global termination pro-
cedure as any network message could increase the top residual above the termination threshold.

We solve the problem using a hysteresis procedure. In addition to the standard termination
threshold β, we also define a “lower threshold” on each node called β0 where β0 ≤ β. The Splash
algorithm will try to achieve local convergence using β0 as the termination threshold, but the node
will only resume computation if incoming messages cause the top residual to exceed β.

Instead of requiring the user to provide β0, we provide an adaptive procedure to find β0. We
initially set β0 to be equal to β. When the node receives a message which causes the top residual to
exceed β, we decrease β0 by a constant factor: β0 ← β0/c where c > 1. The Splash algorithm then
proceeds as usual, but reporting local convergence only when the top residual falls below β0. The
choice of c is important as small values of c will result in excessive flapping, while large values of
c will result in increased runtime due to unnecessarily low termination thresholds. We set c = 2 in
our distributed experiments.

37

Algorithm 11: The Distributed Splash Algorithm

// The graph partitioning phase =========================>
// Construct factor k over-partitioning for p processors
Btemp ← OverSegment(G, p, k);1

// Randomly assign over-partitioning to the original
processors

B ← RandomAssign(Btemp, p);2

// The distributed inference phase ======================>
forall b ∈ B do in parallel

// Collect the variables and factors associated with this
partition

Collect(Fb,Xb) ;3

// Initialize the local priority queue
Initialize (Q);4

// Loop until TokenRing signifies convergence
while TokenRing(Q, β) do5

v ← Top(Q) ;
DynamicSplash(v, Wmax, β);6

RecvExternalMsgs();7

// Update priorities affected by the Splash and newly
received messages

foreach u ∈ local changed vertices do8

Promote(Q, ||∆bv||1);9

SendExternalMsgs();10

9.5 The Distributed Splash Algorithm

We now present the distributed Splash algorithm (Alg. 11) which can be divided into two phases,
setup and inference. In the setup phase, in Line 1 we over-segment the input factor graph into kp
pieces using the METIS partitioning algorithm. Note that this could be accomplished in parallel
using ParMETIS, however our implementation uses the sequential version for simplicity. Then in
Line 2 we randomly assign k pieces to each of the p processors. In parallel each processor collects
its factors and variables (Line 3). On Line 4 the priorities of each variable and factor are set to
infinity to ensure that every vertex is updated at least once.

On Line 5 we evaluate the top residual with respect to the β convergence criterion and check for
termination in the token ring. On Line 6, the DynamicSplash operation is applied to v. In the
distributed setting Splash construction procedure does not cross partitions. Therefore each Splash
is confined to the vertices on that processor. After completing the Splash all external messages
from other processors are incorporated (Line 7). Any beliefs that changed during the Splash or after
receiving external messages are promoted in the priority queue on Line 9. On Line 10, the external
messages are transmitted across the network. The process repeats until termination at which point
all beliefs are sent to the originating processor.

38

Empirically, we find that accumulating external messages and transmitting only once every 5-10
loops tends to increase performance by substantially decreasing network overhead. Accumulating
messages may however adversely affect convergence on some graphical models. To ensure conver-
gence in our experiments, we transmit on every iteration of the loop.

9.6 Preserving Splash Chain Optimality

We now show that Splash retains the optimality in the distributed setting.

Theorem 9.1 (Splash Chain Optimality) Given a chain graph with n = n vertices and p ≤ n
processes, the distributed Splash algorithm with no over-segmentation, using a graph partitioning
algorithm which returns connected partitions, and with work Splash size at least 2

∑
v∈V wv/p will

obtain a τε-approximation in expected running time O
(
n
p + τε

)
.

Proof [Proof of Theorem 9.1] We assume that the chain graph is optimally sliced into p connected
pieces of n/p vertices each. Since every vertex has at most 2 neighbors, the partition has at most
2n/p work. A Splash anywhere within each partition will therefore cover the entire partition, per-
forming the complete “forward-backward” update schedule.

Because we send and receive all external messages after every splash, after d τεn/pe iterations,
every vertex will have received messages from vertices a distance of at least τε away. The runtime
will therefore be:

2n
p
×
⌈
τε
n/p

⌉
≤ 2n

p
+ 2τε

Since each processor only send 2 external messages per iteration (one from each end of the
partition), communication therefore only adds a constant to the total runtime.

10. EXPERIMENTS

We evaluated the Splash belief propagation algorithm in the sequential, multi-core (shared memory),
and cluster (distributed) settings on a wide variety of graphical models. We compare our results
against several popular sequential belief propagation algorithms and their “natural” parallelizations
(see Appendix B for details about these algorithms). In this section we briefly describe the graphical
models used to assess the Splash algorithm and then present performance results for the sequential
and parallel settings.

10.1 Experimental Setup

We obtained 7 large Markov Logic Networks (MLNs) from Domingos et al. (2008), 276 protein
side chain models from Yanover et al., 8 protein-protein interaction networks Elidan et al. (2006),
and 249 graphical models of varying structures from the UAI (A. Darwiche and Otten, 2008). In
addition we constructed several variations of the synthetic denoising task described in Sec. ??. In
Tab. 3 and Fig. 10.1 we summarize the properties of a few representative instances.

The Markov Logic Networks (MLNs), provided by (Domingos et al., 2008), represent a prob-
abilistic extension to first-order logic obtained by attaching weights to logical clauses. We used
Alchemy to compile several MLNs into factor graph form. We constructed MLNs from the UW-CSE

39

Name Type Var. Type |X | |F| |E|
uw-systems MLN {0, 1} 7,951 209,843 417,447
uw-ai MLN {0, 1} 4,790 175,607 351,596
cora-1 MLN {0, 1} 10,843 28,041 55,848
protein-1a76 Irregular MRF {1, . . . , 80} 315 3,161 6,322
elidan1 MRF {0, 1} 14,306 21,841 57,659

Table 3: We evaluated the Splash belief propagation algorithm on a wide range of graphical models. These networks
drawn from several different domains have varying sparsity structure, variable arity, and size. The columns
|X |, |F|, and |E| correspond to the number of variables, factors, and edges respective.

0 1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

Log(Degree)

C
ou

nt

(a) Deg. UW-Systems

0 1 2 3 4 5 6
0

1000

2000

3000

4000

5000

Log(Degree)

C
ou

nt

(b) Deg. UW-AI

0 2 4 6 8
0

2000

4000

6000

8000

10000

Log(Degree)

C
ou

nt

(c) Deg. Cora-1

1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

Log(Degree)

C
ou

nt

(d) Deg. 1a76

0 1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000

8000

Log(Degree)

C
ou

nt

(e) Deg. Elidan1

0 2 4 6 8
0

2

4

6

8

10

12

14

Log(max/min)

Lo
g(

C
ou

nt
)

(f) Dyn. Rng. UW-
Sys.

0 2 4 6 8
0

2

4

6

8

10

12

Log(max/min)

Lo
g(

C
ou

nt
)

(g) Dyn. Rng. UW-AI

0 5 10 15
0

2

4

6

8

10

Log(max/min)

Lo
g(

C
ou

nt
)

(h) Dyn. Rng. Cora-1

0 200 400 600 800
0

1

2

3

4

5

6

7

8

Log(max/min)

Lo
g(

C
ou

nt
)

(i) Dyn. Rng. 1a76

0 2 4 6 8
0

2

4

6

8

10

Log(max/min)

Lo
g(

C
ou

nt
)

(j) Dyn. Rng. Elidan1

Figure 14: The distributions of the variable degree and factor dynamic range help characterize the connectivity struc-
ture of a network. In (a), (b), (c), (d), and (e) we plot the empirical distribution of the log(degree) of
the variables. Models like the large Markov Logic Networks ((a) and (b)) have irregular degree distri-
butions with many sparsely connected variables and many very densely connected variables. Alterna-
tively the protein side-chain factor graphs have a more uniform degree distribution and therefore con-
nectivity structure. In (f), (g), (h), (i), and (j) we plot the distribution of the dynamic range (?) given
by maxxu,xv log

“
ψu(xu)
ψv(xv)

”
. Higher dynamic ranges imply more deterministic potentials and therefore

stronger coupling between the variables.

relational data-set (Domingos, 2009) and present results for the two largest MLNS, uw-systems and
uw-ai. The factor graphs derived from uwcsedata, are considerably more challenging than many of
the factor graphs and we found that only our Splash algorithm consistently converges for these mod-
els. As a consequence we are unable to use the uwcsedata models to compare scaling results against
the baseline algorithms. Therefore we also constructed MLNs from the cora entity resolution data
set. These smaller MLNs are more amenable to traditional belief propagation algorithms permitting
an effective baseline comparison. With highly irregular degree distributions (Fig. 10.1) and many
variables that participate in a large number of factors, these models test effective scheduling methods

40

and in particular the need for belief residuals. While lifted inference (Singla and Domingos, 2008)
is often used on MLNs, here we used standard inference on the full model to retain consistency
across all experiments.

The pairwise Markov Random Fields provided by Yanover et al. are derived from the protein
side-chain prediction task which can be framed as finding the energy minimizing joint assignment to
a pairwise MRF. The models vary in complexity with up to 700 variables and angle discretizations
ranging from 2 to 80. Due to the high dynamic range in the node and edge potentials (see Fig. 14(i)),
log-space message calculations were required. In addition to the side-chain MRF structures and po-
tentials, the true side-chain configurations, (obtained through x-ray crystallography) were provided
by (Yanover et al.) and are used to assess the accuracy of the MAP estimates. The protein MRFs
test parallel inference techniques in settings where variables are highly connected and share strong
interactions.

We also considered protein-protein interaction networks provided by Elidan et al. (2006). These
networks consist of approximately 30,000 binary hidden variables with structures induced from a
relational Markov network (Taskar et al., 2004) which defines a set of template potentials. These
networks contain node factors derived from the noisy observations and trinary factors which en-
code interactions between co-localized proteins. We adopt the setup of Elidan et al. (2006) using 8
networks with the same structure but different parameters. While Elidan et al. (2006) found these
networks, which have many cycles and relatively strong potentials, to be challenging for conven-
tional belief propagation type algorithm.

We evaluated the average accuracy of the belief estimates on the UAI 2008 Probabilistic In-
ference Evaluation data set (A. Darwiche and Otten, 2008). Ground truth data was obtained using
the exact inference software ACE 2.0 (Huang et al., 2006). A benchmark set of 249 models were
chosen based on what we managed to get ACE 2.0 to solve in reasonable time.

10.1.1 IMPLEMENTATION

We implemented all algorithms in C++ using PThreads for shared memory parallelism and MPI
(MPICH2) for message passing in the distributed setting. All algorithms used the same core schedul-
ing, convergence assessment, and message computation code and differed only in the update schedul-
ing and overall algorithm structure as described earlier and in Appendix B. To ensure numerical
stability and convergence, log-space message calculations and 0.3 damping were used. All code
was compiled using GCC 4.3.2 and run on 64Bit Linux systems. We have released the code for
all the implemented inference algorithms along with user-friendly Matlab wrappers for sequential
and shared memory inference 7 at ?. All timing experiments were conducted in isolation without
any external load on the machines or network resources. All sequential and shared memory exper-
iments were conducted on Quad-Core AMD Opteron 2.7GHz (2384) processors with shared 6MB
L3 cache.

Distributed experiments were conducted on cluster composed of 13 blades (nodes) each with
2 Intel Xeon E5345 2.33GHz Quad core processors. Each processor is connected to the memory
on each node by a single memory controller. The nodes are connected via a fast Gigabit ethernet
switch. We invoked the weighted kmetis partitioning routine from the METIS software library for
graph partitioning and partitions were computed in under 10 seconds.

7. Matlab wrappers for distributed memory inference are substantially more challenging to write because of the addi-
tional system requirements imposed by MPI.

41

0 0.5 1 1.5 2

0.04

0.06

0.08

0.1

0.12

Runtime (Seconds)

A
ve

ra
ge

 L
1 E

rr
or

 in
 B

lf.
 E

st
im

at
es

Synchronous
Round Robin

Wildfire

Residual

Splash

(a) Average L1 Error

0 1 2 3 4 5
0.45

0.5

0.55

0.6

0.65

0.7

Runtime (Seconds)

M
ax

 L
1 E

rr
or

 in
 B

lf.
 E

st
im

at
es Synchronous

Residual

Splash

Wildfire

Round Robin

(b) Maximum L1 Error

0 1 2 3 4
0.82

0.84

0.86

0.88

0.9

0.92

0.94

Runtime (Seconds)

%
 V

ar
ia

bl
es

 w
ith

 C
or

re
ct

 M
A

P
 E

st
.

Splash

Wildfire

Round Robin

Synchronous

(c) MAP Accuracy

Figure 15: We assessed the accuracy of Splash algorithm using the exact inference challenge networks from ? as
well as the protein side chain prediction networks obtained from Yanover et al.. In (a) and (b) we plot the
average and max L1 error in the belief estimates for all variables as a function of the running time. In (c)
we plot the prediction accuracy of the MAP estimates as a function of the running time. In all cases we find
that Splash belief propagation achieves the greatest accuracy in the least time.

10.2 Sequential Setting

The running time, computational efficiency, and accuracy of the sequential Splash algorithm were
evaluated in the single processor setting. In Fig. 15(a), Fig. 15(b), and Fig. 15(c) we plot the average
belief accuracy, worst case belief accuracy, and map prediction accuracy against the runtime on a
subset of the UAI 2008 Probabilistic Inference Evaluation data set (A. Darwiche and Otten, 2008).
We ran each belief propagation algorithm to β = 10−5 convergence and recorded the runtime in
seconds and the marginal estimates for all variables. We compared against the exact marginals
obtained using Ace 2.0 (Huang et al., 2006). In all cases the Splash algorithm obtained the most ac-
curate belief estimates in the shortest time. The other baseline belief propagation algorithms follow
a consistent pattern with wildfire and residual belief propagation (dynamical scheduled algorithms)
consistently outperforming round-robin and synchronous belief propagation (fixed schedules). We
also assessed accuracy on the protein side chain prediction task. Here we find that all belief propa-
gation algorithms achieve roughly the same prediction accuracy of 73% for χ1 and χ2 angles which
is consistent with the results of Yanover et al..

We assessed the convergence of the Splash belief propagation algorithm using several different
metrics. In Fig. 16(a) we plot the number of protein networks that have converged (β = 10−5)
against the run-time. Here we find that not only does Splash belief propagation converge faster than
other belief propagation algorithms, it also converges more often. In Fig. 16(b) we plot the number
of protein networks that have converged (β = 10−5) against the number of message computations.
Again, we see that Splash belief propagation converges using less work than other belief propagation
algorithms. Surprisingly, when we extend this analysis to the 5 UW-CSE graphs Splash belief
propagation only fails to converge (β = 10−5) on one, uw-ai, while the popular baseline algorithms
fail to converge on all of the UW-CSE MLNs.

In Fig. 17(a) and Fig. 17(b) we directly compare the running time and work of the sequential
Splash algorithm against other common scheduling strategies on the challenging elidan protein-
protein interaction networks. The results are presented for each of the 8 networks separately with
bars in the order Splash, Residual, Wildfire, Round-Robin, and Synchronous. All algorithms con-
verged on all networks except residual belief propagation which failed to converge on the elidan5
network. In all cases the Splash algorithm achieves the shortest running time and is the in the bottom

42

0 100 200 300 400 500 600
0

50

100

150

200

250

300

Runtime (Seconds)

C

on
ve

rg
ed

Splash

Wildfire

Residual

Roundrobin

Synchronous

(a) Protein Convergence vs. Time

0 2 4 6 8

x 10
6

0

50

100

150

200

250

300

Message Computations

C

on
ve

rg
ed Wildfire

Synchronous

Roundrobin

Residual

Splash

(b) Protein Convergence vs. Work

Figure 16: The Splash algorithm demonstrates faster and more consistent convergence than other baseline algorithms
on a single processor. In the number of converged (β = 10−5) networks (out of 276) is plotted against the
runtime (a) and number of message calculations (b).

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

Elidan Networks

R
un

tim
e

(S
ec

on
ds

)

(a) Runtime Elidan Networks

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

x 10
7

Elidan Networks

M

es
sa

ge
 C

om
pu

ta
tio

ns

(b) Work Elidan Networks

Figure 17: We assessed runtime and convergence on the elidan protein-protein interaction networks. In (a) and (b)
we plot the runtime in seconds and the work in message computations for each algorithm on each net-
work. Each bar represents a different algorithm in the order Splash, Residual, Wildfire, Round-Robin, and
Synchronous from left (darkest) to right (lightest).

two in total message computations. Since the Splash algorithm favors faster message computations
(lower degree vertices), it is possible for the Splash algorithm is able to achieve a shorter runtime
even while doing slightly more message computations.

10.3 Shared Memory Parallel Setting

In the shared memory setting we focus our analysis on computational efficiency and speedup. The
accuracy and convergence behavior in the shared memory parallel setting are equivalent to the single

43

processor setting. We present runtime, speedup, work, and efficiency results as a function of the
number of cores on the 1a76 (Fig. 18) and Elidan-1 (Fig. 19) protein networks as well as the Cora-
1(Fig. 20), UW-AI (Fig. 21), and UW-Systems (Fig. 22) MLNs. While all algorithms converged on
the 1a76, Elidan-1, Cora-1 networks, only Residual and Splash converged on the UW-Languages
network and only Splash converged on the UW-Systems and UW-AI networks.

The runtime, shown in sub-figure (a) of Fig. 18 through Fig. 22, is measured in seconds of
elapsed wall clock time before convergence. An ideal run-time curve for p processors is proportional
1/p. As discussed earlier it is important that the initial runtime p = 1 be as low as possible.
On all of the models we find that the Splash algorithm achieved a runtime that was strictly less
than the standard belief propagation algorithms. We also find that the popular static scheduling
algorithms, round-robin and synchronous belief propagation, are consistently slower than the less
common dynamic scheduling algorithms, Residual, Widlfire, and Splash.

The speedup, shown in sub-figure (b), is measured relative to the fastest single processor algo-
rithm. By measuring the speedup relative to the fastest single processor algorithm we ensure that
highly parallel inefficiencies do not appear as optimal scaling. An algorithm with highly parallel
inefficiency will demonstrate ideal scaling when measured relative to itself but poor scaling when
measured relative to the best (most efficient) single processor algorithm. As a consequence of the
relative-to-best speedup definition, inefficient algorithms may exhibit a speedup less than 1. We
find that the Splash algorithm scales better and achieves near linear speedup on all of the mod-
els. Furthermore, we again see a consistent pattern in which the dynamic scheduling algorithms
dramatically outperform the static scheduling algorithms. The inefficiency in the static scheduling
algorithms (synchronous and round robin) is so dramatic that the parallel variants seldom achieve
more than a factor of 2 speedup using 16 processors.

We measured work, plotted in sub-figure (c), in terms of the number of message calculations
before convergence. The total work, which is a measure of algorithm efficiency, should be as small
as possible and not depend on the number of processors. We find that the Splash algorithm generally
does the least work and that the number of processors has minimal impact on the total work done.
However, surprisingly, we found on several of the Cora MLNs, the Wildfire algorithm actually does
slightly less work than the Splash and Residual algorithms.

Finally, we assessed computation efficiency, shown in sub-figure (d), by computing the number
of message calculations per processor-second. The computational efficiency is a measure of the
raw throughput of message calculations during inference. Ideally, the efficiency should remain as
high as possible. The computational efficiency, captures the cost of building spanning trees in the
Splash algorithm or frequently updating residuals in the residual algorithm. The computational
efficiency also captures concurrency costs in-curred at spin-locks and barriers. In all cases we
see that the Splash algorithm is considerably more computationally efficient. While it is tempting
to conclude that the implementation of the Splash algorithm is more optimized, all algorithms used
the same message computation, scheduling, and support code and only differ in the core algorithmic
structure. Hence it is surprising that the Splash algorithm, even with the extra overhead associated
with generating the spanning tree in each Splash operations. However, by reducing the frequency of
queue operations and the resulting lock contention, by increasing cache efficiency through message
reuse in the forward and backward pass, and by favoring lower work high residual vertices in each
spanning tree, the Splash algorithm is able to update more messages per processor-second.

44

2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

Number of Processors

R
un

tim
e

(S
ec

on
ds

)

Round Robin

Synchronous

Residual

Splash

Wildfire

(a) Runtime

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

Linear

Residual

Synchronous

Splash

Wildfire

Round Robin

(b) Speedup

2 4 6 8 10 12 14 16
0

2

4

6

8

10

x 10
5

Number of Processors

M

sg
. C

al
cu

la
tio

ns

Synchronous

Round Robin
Splash

Wildfire

Residual

(c) Work

2 4 6 8 10 12 14 16

4000

5000

6000

7000

8000

9000

10000

Number of Processors

M

sg
. C

al
cu

la
tio

ns
 P

er
 C

P
U

−
S

ec
on

d

Splash

Round Robin
Residual

Wildfire

Synchronous

(d) Comp. Efficiency

Figure 18: Shared memory results for the 1a76 Protein Network

2 4 6 8 10 12 14 16
0

100

200

300

400

500

Number of Processors

R
un

tim
e

(S
ec

on
ds

)

Synchronous

Round Robin

Wildfire

Residual

Splash

(a) Runtime

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

Linear

Splash

Residual
Wildfire

Round Robin
Synchronous

(b) Speedup

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

x 10
7

Number of Processors

M

sg
. C

al
cu

la
tio

ns

Synchronous

Round Robin

Wildfire

Splash
Residual

(c) Work

2 4 6 8 10 12 14 16

3

3.5

4

4.5

5

5.5

6
x 10

4

Number of Processors

M

sg
. C

al
cu

la
tio

ns
 P

er
 C

P
U

−
S

ec
on

d

Splash

Residual

Synchronous

Round Robin

Wildfire

(d) Comp. Efficiency

Figure 19: Shared memory results for the Elidan-1 Protein Network

2 4 6 8 10 12 14 16
0

10

20

30

40

50

Number of Processors

R
un

tim
e

(S
ec

on
ds

)

Synchronous
Round Robin

Wildfire
Residual

Splash

(a) Runtime

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

Linear
Splash

Residual

Round Robin

Wildfire

Synchronous

(b) Speedup

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

x 10
6

Number of Processors

M

sg
. C

al
cu

la
tio

ns

Synchronous

Round Robin

Splash
Wildfire

Residual

(c) Work

2 4 6 8 10 12 14 16

2

3

4

5

6

x 10
4

Number of Processors

M
sg

. C
al

cu
la

tio
ns

 P
er

 C
P

U
−

S
ec

on
d

Splash

Wildfire
Residual

Round Robin

Synchronous

(d) Comp. Efficiency

Figure 20: Shared memory results for the Cora-1 MLN

2 4 6 8 10 12 14 16
0

200

400

600

800

1000

Number of Processors

R
un

tim
e

(S
ec

on
ds

)

Splash

(a) Runtime

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

Linear

Splash

(b) Speedup

2 4 6 8 10 12 14 16
0

2

4

6

8

x 10
7

Number of Processors

M

sg
. C

al
cu

la
tio

ns

Splash

(c) Work

2 4 6 8 10 12 14 16
7

7.2

7.4

7.6

7.8

x 10
4

Number of Processors

M

sg
. C

al
cu

la
tio

ns
 P

er
 C

P
U

−
S

ec
on

d

Splash

(d) Comp. Efficiency

Figure 21: Shared memory results for the UW-AI MLN

2 4 6 8 10 12 14 16
0

200

400

600

800

1000

Number of Processors

R
un

tim
e

(S
ec

on
ds

)

Splash

(a) Runtime

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of Processors

S
pe

ed
up

Linear

Splash

(b) Speedup

2 4 6 8 10 12 14 16
0

5

10

15

x 10
7

Number of Processors

M

sg
. C

al
cu

la
tio

ns

Splash

(c) Work

2 4 6 8 10 12 14 16

1.05

1.1

1.15

1.2
x 10

5

Number of Processors

M

sg
. C

al
cu

la
tio

ns
 P

er
 C

P
U

−
S

ec
on

d

Splash

(d) Comp. Efficiency

Figure 22: Shared memory results for the UW-Systems MLN

45

10.4 Distributed Parallel Setting

To assess the performance of the Splash algorithm in the distributed setting we focus our attention
on larger models. While it is possible to run any of the distributed belief propagation algorithms
on the smaller models, the cost of starting a distributed execution dominates the already sub-second
multicore runtime. Moreover, it is unreasonable to expect to see a speedup on a large 104 processor
distributed system when the single processor runtime is less than a few seconds. To adequately
challenge the distributed algorithms we consider the Elidan protein networks (with a stricter termi-
nation bound β = 10−10) and the larger UW-CSE MLNs (with the termination bound β = 10−5

from the previous section). All the baseline algorithms converged on the Elidan protein networks
except synchronous at 1 processor which ran beyond the 10,000 second cutoff. Consistent with the
multicore results, only the Splash algorithm converges on the larger UW-CSE MLNs.

Since all the baseline algorithms converged on the smaller Elidan networks we use these net-
works for algorithm comparison. Because the single processor runtime on these networks is only
a few minutes we analyze performance from 1 to 40 processors in increments of 5 rather than us-
ing the entire 104 processor system. As discussed in the experimental setup, we consider partition
factors of 2, 5, and 10 for each algorithm and present the results using the best partition factors for
each of the respective algorithms (which is typically 5). In Fig. 23(a) and Fig. 23(b) we present
the standard runtime and speedup curves which show that the Splash algorithm achieves the best
runtime and speedup performance with a maximum speedup of rough 23 at 40 processors. While
the speedup does not scale linearly we achieve a runtime of 6.4 seconds at 40 processors making
it difficult to justify extending to an additional 80 processors. We also plot the amount of work
Fig. 23(c) as a function of the number of processors and find that despite the message delays and
distributed scheduling, the algorithmic efficiency remains relatively constant with the Splash and
Wildfire algorithm performing optimally.

In Fig. 23(d) we plot the total amount of network traffic measured in bytes as a function of
the number of processors and we find that the Splash algorithm performs the minimal amount of
network communication. Furthermore the amount of network communication scales linearly with
the number of processors. We also find in Fig. 23(e) that the Splash algorithm is able to more
fully utilize the cluster by executing more message calculations per processor-second and doing
so consistently as the number of processor scales. Finally, we compare the algorithms in terms
of their communication efficiency measured in total bytes sent per processor-second. The total
bytes sent per processor-second, plotted in Fig. 23(f) is a measure of the network bandwidth used
per machine. Again we find that the Splash requires the minimal network bandwidth and that the
network bandwidth grows sub-linearly with the number of processors. At peak load we use less
than a megabyte per second per machine.

The larger UW-CSE MLNs provide the best demonstration of the effectiveness of the Splash
algorithm. None of the other inference algorithms converge on these models, and the models are
sufficiently large to justify the use of a cluster. In Fig. 24 and Fig. 25, we provide plots for the
UW-Systems and the UW-AI MLNS respectively.

The UW-Systems model is larger, and we could demonstrate a linear to super-linear speedup up
to about 65 processors. At 65 processors, the runtime is about 23.6 seconds with a partition factor of
10. The speedup curves start to flatten out beyond that. The plot in Fig. 24(b) justify the claim that
over-partitioning can increase performance through improved load-balancing. Over-partitioning

46

1 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

400

Number of Processors

R
un

tim
e

(S
ec

on
ds

)

Round Robin

Splash

Synchronous

Wildfire

(a) Runtime

1 5 10 15 20 25 30 35 40
01

5

10

15

20

25

30

35

40

Number of Processors

S
pe

ed
up

Linear

Splash

Synchronous

Round Robin

Wildfire

(b) Speedup

1 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

x 10
7

Number of Processors

M

sg
. C

al
cu

la
tio

ns

Synchronous

Round Robin

WildfireSplash

(c) Work

1 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

x 10
7

Number of Processors

B

yt
es

 S
en

t p
er

 S
ec

on
d

Wildfire

Round Robin

Synchronous

Splash

(d) Communication

1 5 10 15 20 25 30 35 40

3

3.5

4

4.5

5

5.5

6

6.5
x 10

4

Number of Processors

M

sg
. C

al
cu

la
tio

ns
 P

er
 C

P
U

−
S

ec
on

d

Splash

Round Robin
Wildfire

Synchronous

(e) Work Efficiency

1 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

x 10
5

Number of Processors

B

yt
es

 S
en

t P
er

 C
P

U
−

S
ec

on
d

Splash

Round Robin
Synchronous

Wildfire

(f) Comm. Efficiency

Figure 23: Distributed Parallel Results for the Elidan1 Protein Network

however, does lead to increased network communication as seen in Fig. 24(d) and Fig. 24(f). At 65
processors, over 100 MB of network messages were communicated in 23 seconds.

The UW-AI model in Fig. 25 has similar results. However, as the model is smaller, we notice
that the speedup curves start to flatten out earlier, demonstrating linear speedup only up to about 39
processors. Once again, at 65 processors, the runtime is only 22.7 seconds with a partition factor of
10.

11. Conclusion

As part of this project we identified, characterized, and addressed the challenges to the design and
implementation of fast efficient parallel belief propagation in the shared and distributed memory
settings. We identified the underlying sequential structure to message passing inference. Through
a worst-case asymptotic runtime analysis we characterized the parallel runtime of the popular syn-
chronous belief propagation algorithm revealing a substantial (quadratic) inefficiency. We then
presented the optimal parallel forward-backward schedule which achieves optimal performance.

We identified the role of approximation in exposing greater parallelism in belief propagation.
Using the notion of a τε-approximation, we characterized the role of message approximations in
the optimal parallel running time of belief propagation. We showed that the naturally parallel
synchronous belief propagation algorithm is far from the optimal lower bound even in the τε-
approximation setting. We then presented simple parallel ChainSplash algorithm which is built
around small local forward-backward schedules and achieves the optimal lower bound.

We extended the chain specific Splash operation in the ChainSplash algorithm to arbitrary cyclic
graphical models by generalizing the local forward backward scheduling to a forward-backward
scheduling on specially constructed local spanning-trees. We developed dynamic belief based

47

13 26 39 52 65 78 91 104
0

200

400

600

800

1000

1200

1400

1600

Number of Processors

R
un

tim
e

(S
ec

on
ds

)

k=2

k=5k=10

(a) Runtime

13 26 39 52 65 78 91 104
0

13

26

39

52

65

78

91

104

Number of Processors

S
pe

ed
up

k=10

k=5

Linear
k=2

(b) Speedup

13 26 39 52 65 78 91 104
0

0.5

1

1.5

2

2.5

3

3.5
x 10

8

Number of Processors

M

sg
. C

al
cu

la
tio

ns

k=2

k=5

k=10

(c) Work

13 26 39 52 65 78 91 104
0

5

10

15
x 10

7

Number of Processors

B

yt
es

 S
en

t

k=10

k=5

k=2

(d) Communication

13 26 39 52 65 78 91 104

6

6.5

7

7.5

8

8.5

x 10
4

Number of Processors

M

sg
. C

al
cu

la
tio

ns
 P

er
 C

P
U

−
S

ec
on

d

k=5

k=10

k=2

(e) Comp. Efficiency

13 26 39 52 65 78 91 104
0

0.5

1

1.5

2
x 10

6

Number of Processors

B

yt
es

 S
en

t P
er

 C
P

U
−

S
ec

on
d

k=10

k=5

k=2

(f) Com. Efficiency

Figure 24: Distributed Parallel Results for the UW-Systems MLN

1 13 26 39 52 65 78 91 104
0

200

400

600

800

1000

Number of Processors

R
un

tim
e

(S
ec

on
ds

)

k = 2

k = 5

k = 10

(a) Runtime

1 13 26 39 52 65 78 91 104
01

13

26

39

52

65

78

91

104

Number of Processors

S
pe

ed
up

Linear

k = 5

k = 2

k = 10

(b) Speedup

1 13 26 39 52 65 78 91 104
0

1

2

3

4

x 10
8

Number of Processors

M

sg
. C

al
cu

la
tio

ns

k = 2

k = 10

k = 5

(c) Work

1 13 26 39 52 65 78 91 104
0

5

10

15
x 10

7

Number of Processors

B

yt
es

 S
en

t

k = 10

k = 5

k = 2

(d) Communication

1 13 26 39 52 65 78 91 104

5.5

6

6.5

7

7.5

8

8.5

x 10
4

Number of Processors

M

sg
. C

al
cu

la
tio

ns
 P

er
 C

P
U

−
S

ec
on

d

k = 2

k = 10
k = 5

(e) Comp. Efficiency

1 13 26 39 52 65 78 91 104
0

0.5

1

1.5

2

x 10
6

Number of Processors

B

yt
es

 S
en

t P
er

 C
P

U
−

S
ec

on
d

k = 10

k = 5

k = 2

(f) Com. Efficiency

Figure 25: Distributed Parallel Results for the UW-AI MLN

48

scheduling technique to select Splash locations intelligently adapt the size and shape of each Splash.
We then demonstrated that the resulting Splash algorithm out-performs all existing schedules in
the sequential and shared memory setting. Finally we presented how graph partitioning and over-
partitioning can be used to adapt the Splash algorithm to the distributed setting. Again in the dis-
tributed setting we demonstrated that the Splash algorithm outperforms all existing techniques.

12. Future Work

A direct consequence of this project was the development of the GraphLab framework described in
Low et al. (2010). This framework permits the rapid design of parallel machine learning algorithms
like Splash BP. Using the GraphLab framework we have since made further progress in parallel
graphical model inference and simultaneous learning. We have also used the GraphLab framework
to begin studying how to construct parallel Monte Carlos simulations.

Appendix A. Belief Residuals

A.1 Message Residuals May Underestimate Changes in Beliefs

For a vertex of degree d, ε changes to individual messages can compound, resulting in up to dε
change in beliefs. We demonstrate this behavior by considering a variable Xi with d = |Γi| incom-
ing messages {m1, . . . ,md}. Suppose all the incoming messages are changed to {m′1, . . . ,m′d}
such that the resulting residual is less than 2ε (i.e., ∀k : |m′k −mk|1 ≤ 2ε); and that the messages
have converged using the convergence criterion in Eq. (3.6) (i.e., 2ε ≤ β). However, the effective
change in belief depends linearly on the degree, and therefore can be far from convergence.

Assume {m1, . . . ,md} are binary uniform messages. Then the belief at that variable is also
uniform (i.e., bi = [1

2 ,
1
2]). If we then perturb the messages m′k(0) = 1

2 − ε and m′k(1) = 1
2 + ε. the

new belief is:

b′i(0) =

(
1
2 − ε

)d(
1
2 + ε

)d +
(

1
2 − ε

)d .
The L1 change of the belief due to the compounded ε change in each message is then:

∥∥b′i(0)− bi(0)
∥∥

1
=

1
2
−

(
1
2 − ε

)d(
1
2 + ε

)d +
(

1
2 − ε

)d .
A 2nd order Taylor expansion around ε = 0 obtains:∥∥b′i(0)− bi(0)

∥∥
1
≈ dε+O(ε3).

Therefore, the change in belief varies linearly in the degree of the vertex enabling small ε message
residuals to translate into large dε belief residuals.

A.2 Message Residuals May Overestimate Changes in Beliefs

A large 1 − ε residual in a single message may result in a small ε change in belief at a high degree
vertex. For instance, if we consider the set {m1, . . . ,md} of binary messages with value [1− ε, ε]

49

then the resulting belief at that variable would be

bi(0) =
(1− ε)d

(1− ε)d + εd
.

If we then change m1 to [ε, 1− ε] then the resulting belief is

b′i(0) =
(1− ε)d−1ε

(1− ε)d−1ε+ εd−1(1− ε)
.

Assuming that 0 < ε ≤ 1
4 and d ≥ 3,

1
2

∥∥b′i − bi∥∥1
=

(1− ε)d

(1− ε)d + εd
− (1− ε)d−1ε

(1− ε)d−1ε+ εd−1(1− ε)

≤ 1− (1− ε)d−1ε

(1− ε)d−1ε+ εd−1(1− ε)

= 1− (1− ε)d−2

(1− ε)d−2 + εd−2

=
εd−2

(1− ε)d−2 + εd−2

We can bound the denominator to obtain:

1
2

∥∥b′i − bi∥∥1
≤ εd−2

(1/2)d−3
= (2ε)d−3ε ≤ ε

2d−3

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5
d=3

d=4

d=5

d=10

ε

L 1 B
el

ie
f E

rr
or

(a) Belief Error against ε

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5
d=3

d=4

d=5

d=10

L
1
 Message Error

L 1 B
el

ie
f E

rr
or

(b) Belief Error against Message Error

Figure 26: (a): Given a vertex of degree d with all incoming messages equal to [1− ε, ε]. This
graph plots the L1 change of belief on a vertex of degree d caused by changing one
message to [ε, 1− ε]. (b): Similar to (a), but plots on the X-axis the L1 change of the
message, which corresponds to exactly 2− 4ε.

To demonstrate this graphically, we plot in Fig. 26(a), the L1 error in the belief |b′i − bi|1,
varying the value of ε. In Fig. 26(b), we plot the L1 error in the beliefs against the L1 change in m1.
The curves look nearly identical (but flipped) since the L1 change is exactly 2 − 4ε (recall that m1

was changed from [1− ε, ε] to [ε, 1− ε]).

50

A.3 Failure Case of Naive Belief Residuals

Without loss of generality we consider a chain MRF of 5 vertices with the binary factorsψXi,Xi+1(xi, xi+1) =
I[xi = xi+1] and unary factors:

ψX1 =
[

1
9 , 9
]

ψX2 =
[

9
10 ,

1
10

]
ψX3 =

[
1
2 ,

1
2

]
ψX4 =

[
1
10 ,

9
10

]
ψX5 =

[
9, 1

9

]
We begin by initalizing all vertex residuals to infinity, and all messages to uniform distributions.

Then we perform the following update sequence marked in black:

X1 X3 X5

X1 X2 X4 X5

X2 X4X3

X1 X3 X5

X2 X4X3

a)

b)

c)

d)

e)

X2 X4

X4X2

X1

X1

X3

X5

X5

After stage (b), m2→3 = ψX2 and m4→3 = ψX4 . Since bX3 ∝ (m2→3 ×m4→3) ∝ [1, 1], the
belief at X3 X3 will have uniform belief. Since X3 is just updated, it will have a residual of 0.

After stage (d), m2→3 ∝ (ψX1 × ψX2) ∝ ψX4 and m4→3 ∝ (ψX5 × ψX4) ∝ ψX2 . These wo
messages therefore have swapped values since stage (b).

Since bX3 ∝ (m2→3 ×m4→3), the belief at X3 will not be changed and will therefore continue
to have uniform belief and zero residual. At this point X2 and X4 also have zero residual since they
were just updated. After stage (e), the residuals at X1 and X5 at set to 0. However, the residuals
on X2 and X4 remain zero since messages m1→2 and m5→4 will not change since state (c). All
variables therefore now have a residual of 0.

By Eq. (7.3) with β = 0 we have converged prematurely since no sequence of messages con-
nects X1 and X5. The use of the naive belief residual in Eq. (7.3) will therefore converge to an
erroneous solution.

Appendix B. Natural Parallelizations of Common Belief Propagation Algorithms

In order to evaluate the parallel Splash algorithm against a strong baseline of competitive parallel
belief propagation algorithms, we developed natural parallelizations of several popular sequential
belief propagation schedulings. In this section we described both the shared and distributed paral-
lelizations of round-robin, wild-fire, and residual belief propagation.

B.1 Parallel Round-Robin Belief Propagation

The round-robin belief propagation scheduling consists of a fixed ordering σ in which vertices are
updated. When possible the ordering σ is constructed using domain knowledge. For our purposes
the ordering σ is determined randomly. In the shared-memory version of the parallel round-robin
belief propagation algorithm (Alg. 12), p processors simultaneously update blocks of p consecutive

51

vertices from σ. Termination is assessed using the maximum belief residual. In the distributed
memory version of parallel round-robin, the over-partitioning procedure described in Sec. 9.1 is
first used to partitioning the graph and then a local sequential round-robin is executed separately on
each processor. Termination in the distributed setting is assessed again using the belief residuals
along with the TokenRing procedure described in Sec. 9.3.

Algorithm 12: Shared Memory Parallel Round-Robin Algorithm
σ ← Random permutation on {1, . . . , |V |}
i← 1
while Not Converged do

// Update the next p vertices in parallel
forall v ∈ {σ(i), . . . , σ(i+ p mod |V |)} do in parallel

SendMessages(v)
i← i+ p+ 1 mod |V |

Algorithm 13: Distributed Round-Robin Algorithm

// Over-segmentation is used to construct a partitioning
B ← over-partitioning of the graph ;
// Enter the distributed phase
forall Processors b ∈ B do in parallel

// Collect the vertices of the factor graph associated with
this processor.

Collect(Fb,Xb);
// Construct a random ordering over vertices in this

partitioning
σ ← Random permutation on b ;
i← 1 ;
while TokenRing(β) do

SendMessages(σ(i)) ;
i← i+ 1 mod |b| ;
RecvExternalMsgs();
SendExternalMsgs();

B.2 Parallel Wildfire Belief Propagation

We construct a parallel version of the Wildfire algorithm original introduced by Ranganathan et al.
(2007) by augmenting the round-robin algorithm to skip vertices with belief residual below the
termination threshold β. The shared-memory and distributed versions of the parallel Wildfire belief
propagation algorithm are given in Alg. 14 and Alg. 15 respectively.

52

Algorithm 14: Shared Memory Parallel Wildfire Algorithm
σ ← Random permutation on {1, . . . , |V |}
i← 1
while Not Converged do

// Update the next p vertices in parallel
forall v ∈ {σ(i), . . . , σ(i+ p mod |V |)} do in parallel

if Belief Residual of v is greater than β then
SendMessages(v)

i← i+ p+ 1 mod |V |

Algorithm 15: Distributed Wildfire Algorithm

// Over-segmentation is used to construct a partitioning
B ← over-partitioning of the graph ;
// Enter the distributed phase
forall Processors b ∈ B do in parallel

// Collect the vertices of the factor graph associated with
this processor.

Collect(Fb,Xb);
// Construct a random ordering over vertices in this

partitioning
σ ← Random permutation on b ;
i← 1 ;
while TokenRing(β) do

if Belief Residual of v is greater than β then
SendMessages(v) ;

i← i+ 1 mod |b| ;
RecvExternalMsgs();
SendExternalMsgs();

B.3 Parallel Residual Belief Propagation

We use a slightly modified version of residual belief propagation original proposed by Elidan et al.
(2006). Instead of scheduling messages we schedule vertices using the belief residuals introduced
in Sec. 7.2. Therefore, we simply run the parallel and distributed Splash algorithms with the splash
size W = 1 set to 1. This forces all Splashes to contain only the root and eliminates the spanning
tree construction.

53

References

A. Choi V. Gogate A. Darwiche, R. Dechter and L. Otten. Uai’08 work-
shop: Evaluating and disseminating probabilistic reasoning systems, 2008.
http://graphmod.ics.uci.edu/uai08/.

A.Y. Ng A. Saxena, S.H. Chung. 3-d depth reconstruction from a single still image. In International
Journal of Computer Vision (IJCV), 2007.

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel com-
puting research: A view from berkeley. Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, December 2006. URL
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.

D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Prentice-
Hall, 1989.

C.T. Chu, S.K. Kim, Y.A. Lin, Y. Yu, G.R. Bradski, A.Y. Ng, and K. Olukotun. Map-reduce for
machine learning on multicore. In NIPS, 2006.

G. F. Cooper. The computational complexity of probabilistic inference using bayesian belief net-
works. Artificial Intelligence, 42:393–405, 1990.

Crupi, Das, and Pinotti. Parallel and distributed meldable priority queues based on binomial heaps.
In ICPP: 25th International Conference on Parallel Processing, 1996.

J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. Commun.
ACM, (1).

P. Domingos. Uw-cse mlns, 2009. URL alchemy.cs.washington.edu/mlns/uw-cse.

P. Domingos, S. Kok, D. Lowd, H. F. Poon, M. Richardson, P. Singla, M. Sumner, and J. Wang.
Markov logic: A unifying language for structural and statistical pattern recognition. In SSPR,
2008.

James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan. Relaxed heaps: An
alternative to Fibonacci heaps with applications to parallel computation. Communications of the
ACM, 31:1343–1354, 1988.

G. Elidan, I. Mcgraw, and D. Koller. Residual belief propagation: Informed scheduling for asyn-
chronous message passing. In UAI, 2006.

Jinbo Huang, Mark Chavira, and Adnan Darwiche. Solving MAP exactly by searching on compiled
arithmetic circuits. In AAAI. AAAI Press, 2006.

Alexander Ihler and David McAllester. Particle belief propagation. In D. van Dyk and M. Welling,
editors, Proceedings of the Twelfth International Conference on Artificial Intelligence and Statis-
tics (AISTATS) 2009, pages 256–263, Clearwater Beach, Florida, 2009. JMLR: W&CP 5.

54

http://graphmod.ics.uci.edu/uai08/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

A.T. Ihler, J.W. Fischer III, and A.S. Willsky. Loopy belief propagation: Convergence and effects
of message errors. J. Mach. Learn. Res., 6, 2005.

G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. J. Parallel
Distrib. Comput., 48(1), 1998.

S. Z. Li. Markov random field modeling in computer vision. Springer-Verlag, London, UK, 1995.
ISBN 4-431-70145-1.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M.
Hellerstein. Graphlab: A new parallel framework for machine learning. In UAI, 2010.

J. Matocha and T. Camp. A taxonomy of distributed termination detection algorithms. SYSTSOFT.

F. Mattern. Algorithms for distributed termination detection. Distributed Computing, 1987.

R.J. McEliece, D.J.C. MacKay, and J.F. Cheng. Turbo decoding as an instance of Pearl’s belief
propagation algorithm. J-SAC, 1998.

A. Mendiburu, R. Santana, J.A. Lozano, and E. Bengoetxea. A parallel framework for loopy belief
propagation. In GECCO ’07: Proceedings of the 2007 GECCO conference companion on Genetic
and evolutionary computation, 2007.

J. Misra. Detecting termination of distributed computations using markers. In SIGOPS, 1983.

J.M. Mooij and H.J. Kappen. Sufficient conditions for convergence of the Sum-Product algorithm.
ITIT, 2007.

Ian Parberry. Load sharing with parallel priority queues. J. Comput. Syst. Sci, 50(1):64–73, 1995.

J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. 1988.

David M. Pennock. Logarithmic time parallel bayesian inference. In Proc. 14th Conf. Uncertainty
in Artificial Intelligence, 1998.

Ananth Ranganathan, Michael Kaess, and Frank Dellaert. Loopy sam. In IJCAI’07: Proceedings of
the 20th international joint conference on Artifical intelligence, pages 2191–2196, San Francisco,
CA, USA, 2007. Morgan Kaufmann Publishers Inc.

D. Roth. On the hardness of approximate reasoning. In ijcai93, pages 613–618, 1993.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.

P. Sanders. Randomized static load balancing for tree-shaped computations. In Workshop on Par-
allel Processing, 1994.

Peter Sanders. Randomized priority queues for fast parallel access. J. Parallel Distrib. Comput, 49
(1):86–97, 1998.

Parag Singla and Pedro Domingos. Lifted first-order belief propagation. In Dieter Fox and Carla P.
Gomes, editors, AAAI. AAAI Press, 2008.

55

J. Sun, N.N. Zheng, and H.Y. Shum. Stereo matching using belief propagation. ITPAM, 2003.

Ben Taskar, Vassil Chatalbashev, and Daphne Koller. Learning associative markov net-
works. In ICML ’04: Proceedings of the twenty-first international conference on Ma-
chine learning, page 102, New York, NY, USA, 2004. ACM. ISBN 1-58113-828-5. doi:
http://doi.acm.org/10.1145/1015330.1015444.

Sekhar Tatikonda and Michael I. Jordan. Loopy belief propogation and gibbs measures. In Adnan
Darwiche and Nir Friedman, editors, UAI, pages 493–500. Morgan Kaufmann, 2002. ISBN 1-
55860-897-4.

M. Wainwright, T. Jaakkola, and A.S. Willsky. Tree-based reparameterization for approximate
estimation on graphs with cycles. In NIPS, 2001.

Y. Weiss. Correctness of local probability propagation in graphical models with loops. Neural
Comput., 2000.

Yair Weiss and William T. Freeman. Correctness of belief propagation in gaussian graphical models
of arbitrary topology. Neural Computation, 13(10):2173–2200, 2001.

Yinglong Xia and Viktor K. Prasanna. Junction tree decomposition for
parallel exact inference. In IPDPS, pages 1–12. IEEE, 2008. URL
http://dx.doi.org/10.1109/IPDPS.2008.4536315.

C. Yanover and Y. Weiss. Approximate inference and protein folding. In NIPS, 2002.

C. Yanover, O. Schueler-Furman, and Y. Weiss. Minimizing and learning energy functions for
side-chain prediction. J Comput Biol.

J.S. Yedidia, W.T. Freeman, and Y. Weiss. Understanding belief propagation and its generalizations.
In Exploring artificial intelligence in the new millennium, 2003.

56

http://doi.acm.org/10.1145/1015330.1015444
http://dx.doi.org/10.1109/IPDPS.2008.4536315

